ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cephalopoda  (2)
  • Fisheries  (2)
  • 1
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15058 | 403 | 2014-05-27 14:27:22 | 15058 | United States National Marine Fisheries Service
    Publication Date: 2021-07-02
    Description: The California market squid (Loligo opalescens Berry), also known as the opalescent inshore squid (FAO), plays a central role in the nearshore ecological communities of the west coast of the United States (Morejohn et al., 1978; Hixon, 1983) and it is also a prime focus of California fisheries, ranking first in dollar value and tons landed in recent years (Vojkovich, 1998). The life span of this species is only 7−10 months after hatching, as ascertained by aging statoliths (Butler et al., 1999; Jackson, 1994; Jackson and Domier, 2003) and mariculture trials (Yang, et al., 1986). Thus, annual recruitment is required to sustain the population. The spawning season ranges from April to November and spawning peaks from May to June. In some years there can be a smaller second peak in November. In Monterey Bay, the squids are fished directly on the egg beds, and the consequences of this practice for conservation and fisheries management are unknown but of some concern (Hanlon, 1998). Beginning in April 2000, we began a study of the in situ spawning behavior of L. opalescens in the southern Monterey Bay fishing area.
    Keywords: Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 389-392
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Advanced Materials 21 (2009): 401-406, doi:10.1002/adma.200801197.
    Description: Recent interest in the development of environmentally benign routes to the synthesis of novel multifunctional materials has resulted in numerous investigations into structure-function relationships of a wide range of biological systems at the ultrastructural, micromechanical, and biochemical levels. While much of this research has concentrated on mineralized structures such as bone, mollusk shells sponge spicules and echinoderm ossicles, there is an equally broad range of animals whose skeletal structures are devoid of mineral components.One such group, the squids (Mollusca: Cephalopoda: Teuthoidea), are remarkable in several aspects. In addition to having an exceptionally well developed brain, sensory systems and skin (for adaptive coloration), these swift agile predators have eight flexible strong arms, two fast extensible tentacles, and strong malleable suckers, all of which are muscular hydrostats.
    Description: We gratefully acknowledge funding from the Swiss National Science Foundation (AM, PA002–113176 / 1), NIH 5 R01 DE 014672, DANSYNC for supporting the synchrotron experiments, and the Danish Research Councils, as well as partial support (RTH) by DARPA DSO BioDynotics Program (Project N66001-03-C-8043).
    Keywords: Cephalopoda ; Proteinaceous ; Cellular solids ; Biomimetic
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 310 (2006): 263-270, doi:10.3354/meps310263.
    Description: The longfin squid Loligo pealeii is distributed widely in the NW Atlantic and is the target of a major fishery. A previous electrophoretic study of L. pealeii was unable to prove genetic differentiation, and the fishery has been managed as a single unit stock. We tested for population structure using 5 microsatellite loci. In early summer (June), when the squids had migrated inshore to spawn, we distinguished 4 genetically distinct stocks between Delaware and Cape Cod (ca. 490 km); a 5th genetic stock occurred in Nova Scotia and a 6th in the northern Gulf of Mexico. One of the summer inshore stocks did not show genetic differentiation from 2 of the winter offshore populations. We suggest that squids from summer locations overwinter in offshore canyons and that winter offshore fishing may affect multiple stocks of the inshore fishery. In spring, squids may segregate by genetic stock as they undertake their inshore migration, indicating an underlying mechanism of subpopulation recognition.
    Description: We acknowledge funding from WHOI Sea Grant NA16RG2273, the Massachusetts Environmental Trust (#98-04), and the Sholley Foundation.
    Keywords: Fisheries ; Spawning migration ; Microsatellites ; Population structure ; Population recognition ; Null alleles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marian, J. E. A. R., Apostólico, L. H., Chiao, C. C., Hanlon, R. T., Hirohashi, N., Iwata, Y., Mather, J., Sato, N., & Shaw, P. W. Male alternative reproductive tactics and associated evolution of anatomical characteristics in loliginid squid. Frontiers in Physiology, 10, (2019): 1281, doi: 10.3389/fphys.2019.01281.
    Description: Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.
    Description: JM acknowledges the funding provided by FAPESP (São Paulo Research Foundation – proc. 2013/02653-1, 2014/11008-5, 2015/15447-6, 2017/16182-1, and 2018/19180-2), CNPq (National Council for Scientific and Technological Development – proc. 477233/2013–9), and CAPES (Coordination for the Improvement of Higher Education Personnel – Finance Code 001).
    Keywords: Sexual selection ; Alternative phenotypes ; ARTs ; ale dimorphism ; Consort ; Sneaker ; Cephalopoda ; Loliginidae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...