ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-03-06
    Description: The motility of molecular motors and the dynamic instability of microtubules are key dynamic processes for mitotic spindle assembly and function. We report here that one of the mitotic kinesins that localizes to chromosomes, Xklp1 from Xenopus laevis, could inhibit microtubule growth and shrinkage. This effect appeared to be mediated by a structural change in the microtubule lattice. We also found that Xklp1 could act as a fast, nonprocessive, plus end-directed molecular motor. The integration of the two properties, motility and inhibition of microtubule dynamics, in one molecule emphasizes the versatile properties of kinesin family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bringmann, Henrik -- Skiniotis, Georgios -- Spilker, Annina -- Kandels-Lewis, Stefanie -- Vernos, Isabelle -- Surrey, Thomas -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1519-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrabetae 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001780" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism/pharmacology ; Animals ; Centrosome/metabolism ; Chromosomes/metabolism ; Cryoelectron Microscopy ; Dimerization ; Kinetics ; Microtubule-Associated Proteins/chemistry/genetics/*metabolism ; Microtubules/drug effects/metabolism/*physiology/ultrastructure ; Molecular Motor Proteins/*metabolism ; Paclitaxel/pharmacology ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Tubulin/metabolism ; Xenopus Proteins/chemistry/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...