ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-08-07
    Description: During the immediate-early response of mammalian cells to mitogens, histone H3 is rapidly and transiently phosphorylated by one or more unidentified kinases. Rsk-2, a member of the pp90rsk family of kinases implicated in growth control, was required for epidermal growth factor (EGF)-stimulated phosphorylation of H3. RSK-2 mutations in humans are linked to Coffin-Lowry syndrome (CLS). Fibroblasts derived from a CLS patient failed to exhibit EGF-stimulated phosphorylation of H3, although H3 was phosphorylated during mitosis. Introduction of the wild-type RSK-2 gene restored EGF-stimulated phosphorylation of H3 in CLS cells. In addition, disruption of the RSK-2 gene by homologous recombination in murine embryonic stem cells abolished EGF-stimulated phosphorylation of H3. H3 appears to be a direct or indirect target of Rsk-2, suggesting that chromatin remodeling might contribute to mitogen-activated protein kinase-regulated gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sassone-Corsi, P -- Mizzen, C A -- Cheung, P -- Crosio, C -- Monaco, L -- Jacquot, S -- Hanauer, A -- Allis, C D -- GM40922/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):886-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, INSERM, ULP, B. P. 163, 67404 Illkirch-Strasbourg, France. paolosc@igbmc.u-strasbg.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436156" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Abnormalities, Multiple/genetics/metabolism ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cells, Cultured ; Epidermal Growth Factor/*pharmacology ; Gene Expression Regulation ; Gene Targeting ; Histones/*metabolism ; Humans ; Mice ; Mitosis ; Mutation ; Phosphorylation ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-12-21
    Description: ACT is a LIM-only protein expressed exclusively in round spermatids, where it cooperates with transcriptional activator CREM in regulating various postmeiotic genes. Targeted inactivation of CREM leads to a complete block of mouse spermiogenesis. We sought to identify the regulatory steps controlling the functional interplay between CREM and ACT. We found that ACT selectively associates with KIF17b, a kinesin highly expressed in male germ cells. The ACT-KIF17b interaction is restricted to specific stages of spermatogenesis and directly determines the intracellular localization of ACT. Sensitivity to leptomycin B indicates that KIF17b can be actively exported from the nucleus through the Crm1 receptor. Thus, a kinesin directly controls the activity of a transcriptional coactivator by a tight regulation of its intracellular localization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macho, Betina -- Brancorsini, Stefano -- Fimia, Gian Maria -- Setou, Mitsutoshi -- Hirokawa, Nobutaka -- Sassone-Corsi, Paolo -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2388-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, B. P. 10142, 67404 Illkirch, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493914" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; COS Cells ; Cell Nucleus/metabolism ; Cyclic AMP Response Element Modulator ; Cytoplasm/metabolism ; DNA-Binding Proteins/metabolism ; Fatty Acids, Unsaturated/pharmacology ; Gene Expression Regulation, Developmental ; Karyopherins/metabolism ; Kinesin/chemistry/genetics/*metabolism ; LIM Domain Proteins ; Male ; Mice ; Molecular Motor Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Isoforms/chemistry/genetics/metabolism ; *Receptors, Cytoplasmic and Nuclear ; *Repressor Proteins ; Spermatids/*metabolism ; *Spermatogenesis ; Testis/metabolism ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...