ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-01-24
    Description: Drug resistance in human cancer is associated with overexpression of the multidrug resistance (MDR1) gene, which confers cross-resistance to hydrophobic natural product cytotoxic drugs. Expression of the MDR1 gene can occur de novo in human cancers in the absence of drug treatment. The promoter of the human MDR1 gene was shown to be a target for the c-Ha-Ras-1 oncogene and the p53 tumor suppressor gene products, both of which are associated with tumor progression. The stimulatory effect of c-Ha-Ras-1 was not specific for the MDR1 promoter alone, whereas a mutant p53 specifically stimulated the MDR1 promoter and wild-type p53 exerted specific repression. These results imply that the MDR1 gene could be activated during tumor progression associated with mutations in Ras and p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chin, K V -- Ueda, K -- Pastan, I -- Gottesman, M M -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):459-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1346476" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line ; Drug Resistance ; *Gene Expression Regulation ; Genes, Tumor Suppressor ; Genes, ras ; In Vitro Techniques ; Membrane Glycoproteins/*genetics ; Mice ; P-Glycoprotein ; *Promoter Regions, Genetic ; Proto-Oncogene Proteins p21(ras)/*physiology ; Transcription, Genetic ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-23
    Description: Synonymous single-nucleotide polymorphisms (SNPs) do not produce altered coding sequences, and therefore they are not expected to change the function of the protein in which they occur. We report that a synonymous SNP in the Multidrug Resistance 1 (MDR1) gene, part of a haplotype previously linked to altered function of the MDR1 gene product P-glycoprotein (P-gp), nonetheless results in P-gp with altered drug and inhibitor interactions. Similar mRNA and protein levels, but altered conformations, were found for wild-type and polymorphic P-gp. We hypothesize that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimchi-Sarfaty, Chava -- Oh, Jung Mi -- Kim, In-Wha -- Sauna, Zuben E -- Calcagno, Anna Maria -- Ambudkar, Suresh V -- Gottesman, Michael M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):525-8. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. kimchi@cber.fda.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Codon ; Cyclosporine/pharmacology ; *Genes, MDR ; Haplotypes ; HeLa Cells ; Humans ; Mutagenesis, Site-Directed ; P-Glycoprotein/antagonists & inhibitors/*chemistry/genetics/*metabolism ; *Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhodamine 123/metabolism/pharmacology ; Sirolimus/pharmacology ; Substrate Specificity ; Transfection ; Verapamil/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1986-05-02
    Description: The development of simultaneous resistance to multiple structurally unrelated drugs is a major impediment to cancer chemotherapy. Multidrug resistance in human KB carcinoma cells selected in colchicine, vinblastine, or Adriamycin is associated with amplification of specific DNA sequences (the multidrug resistance locus, mdr1). During colchicine selection resistance is initially accompanied by elevated expression of a 4.5-kilobase mdr1 messenger RNA (mRNA) without amplification of the corresponding genomic sequences. During selection for increased levels of resistance, expression of this mRNA is increased simultaneously with amplification of mdr1 DNA. Increased expression and amplification of mdr1 sequences were also found in multidrug-resistant sublines of human leukemia and ovarian carcinoma cells. These results suggest that increased expression of mdr1 mRNA is a common mechanism for multidrug resistance in human cells. Activation of the mdr1 gene by mutations or epigenetic changes may precede its amplification during the development of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, D W -- Fojo, A -- Chin, J E -- Roninson, I B -- Richert, N -- Pastan, I -- Gottesman, M M -- New York, N.Y. -- Science. 1986 May 2;232(4750):643-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3457471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Colchicine/pharmacology ; Cricetinae ; Cricetulus ; DNA, Neoplasm/genetics ; Doxorubicin/pharmacology ; *Drug Resistance ; Female ; *Gene Amplification ; Humans ; Leukemia, Lymphoid/drug therapy ; Neoplasms/*drug therapy/genetics ; Nucleic Acid Hybridization ; Ovarian Neoplasms/drug therapy ; RNA, Messenger/genetics ; Vinblastine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...