ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-11
    Description: Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andang, Michael -- Hjerling-Leffler, Jens -- Moliner, Annalena -- Lundgren, T Kalle -- Castelo-Branco, Goncalo -- Nanou, Evanthia -- Pozas, Ester -- Bryja, Vitezslav -- Halliez, Sophie -- Nishimaru, Hiroshi -- Wilbertz, Johannes -- Arenas, Ernest -- Koltzenburg, Martin -- Charnay, Patrick -- El Manira, Abdeljabbar -- Ibanez, Carlos F -- Ernfors, Patrik -- G0601943/Medical Research Council/United Kingdom -- England -- Nature. 2008 Jan 24;451(7177):460-4. doi: 10.1038/nature06488. Epub 2008 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18185516" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autocrine Communication ; Blastocyst/cytology/enzymology/metabolism ; Cell Count ; Cell Cycle ; Cell Line ; Cell Proliferation ; Cell Size ; DNA Damage ; GABA-A Receptor Agonists ; GABA-A Receptor Antagonists ; Histones/deficiency/genetics/*metabolism ; Mice ; Neural Crest/cytology/metabolism ; Paracrine Communication ; Patch-Clamp Techniques ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Receptors, GABA-A/genetics/*metabolism ; Stem Cells/*cytology/enzymology/*metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...