ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-11-03
    Description: The isolated head fragment of myosin is a motor protein that is able to use energy liberated from the hydrolysis of adenosine triphosphate to cause sliding movement of actin filaments. Expression of a myosin fragment nearly equivalent to the amino-terminal globular head domain, generally referred to as subfragment 1, has been achieved by transforming the eukaryotic organism Dictyostelium discoideum with a plasmid that carries a 2.6-kilobase fragment of the cloned Dictyostelium myosin heavy chain gene under the control of the Dictyostelium actin-15 promoter. The recombinant fragment of the myosin heavy chain was purified 2400-fold from one of the resulting cell lines and was found to be functional by the following criteria: the myosin head fragment copurified with the essential and regulatory myosin light chains, decorated actin filaments, and displayed actin-activated adenosine triphosphatase activity. In addition, motility assays in vitro showed that the recombinant myosin fragment is capable of supporting sliding movement of actin filaments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manstein, D J -- Ruppel, K M -- Spudich, J A -- GM 33289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):656-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2530629" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics ; Cell Line ; Cloning, Molecular ; Dictyostelium/*genetics ; *Gene Expression ; *Genes ; Genetic Vectors ; Molecular Weight ; Myosin Subfragments/*genetics/isolation & purification ; Myosins/genetics/metabolism ; Plasmids ; Promoter Regions, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-25
    Description: The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reubold, Thomas F -- Faelber, Katja -- Plattner, Nuria -- Posor, York -- Ketel, Katharina -- Curth, Ute -- Schlegel, Jeanette -- Anand, Roopsee -- Manstein, Dietmar J -- Noe, Frank -- Haucke, Volker -- Daumke, Oliver -- Eschenburg, Susanne -- England -- Nature. 2015 Sep 17;525(7569):404-8. doi: 10.1038/nature14880. Epub 2015 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; Max-Delbruck-Centrum fur Molekulare Medizin, Kristallographie, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Institut fur Mathematik, Freie Universitat Berlin, Arnimallee 6, 14195 Berlin, Germany. ; Leibniz-Institut fur Molekulare Pharmakologie, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Forschungseinrichtung Strukturanalyse, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; Institut fur Chemie und Biochemie, Freie Universitat Berlin, Takustrasse 6, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26302298" target="_blank"〉PubMed〈/a〉
    Keywords: Charcot-Marie-Tooth Disease ; Crystallography, X-Ray ; Dynamins/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Markov Chains ; Models, Molecular ; Molecular Dynamics Simulation ; Mutant Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Mutation/genetics ; Myopathies, Structural, Congenital ; Nucleotides ; *Protein Multimerization/genetics ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...