ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-22
    Description: The ability of transposable elements (TEs) to insert into or excise out of a genetic locus can be regulated by genetic, environmental, and developmental factors. Tissue- or organ-specific activity of TEs is a frequent and well-characterized example of spatial, developmental regulation. Regulation of the timing of TE activity during ontogeny is less well understood. To analyze timing, TE-induced variegation was quantified in the aleurone of maize kernels, a tissue composed of only a single layer of cells, and sector sizes were assigned to specific cell divisions in aleurone development. Three TE families, Mu, Spm, and Ac/Ds, were studied at two genetic loci. It was found that the frequency of transposon excision changes drastically (up to 30-fold increase or equivalent decrease) during the proliferation of the aleurone. Moreover, these changes occur at the same cell divisions in all three TE families. These results suggest that the timing of TE excision during maize development can be controlled by the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, A A -- Walbot, V -- GM 32422/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, CA 94305-5020.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2163107" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anthocyanins/biosynthesis/genetics ; Cell Division ; DNA Transposable Elements/*genetics ; Mutation ; Zea mays/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-03
    Description: Infection of maize by corn smut (Ustilago maydis) provides an agronomically important model of biotrophic host-pathogen interactions. After penetration of the maize epidermis, fungal colonization of host tissue induces tumor formation on all aerial maize organs. We hypothesized that transformation of different primordia into plant tumors would require organ-specific gene expression by both host and pathogen and documented these differences by transcriptome profiling. Phenotypic screening of U. maydis mutants deleted for genes encoding secreted proteins and maize mutants with organ-specific defects confirmed organ-restricted tumorigenesis. This is the foundation for exploring how individual pathogen effectors, deployed in an organ-specific pattern, interact with host factors to reprogram normal ontogeny into a tumor pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skibbe, David S -- Doehlemann, Gunther -- Fernandes, John -- Walbot, Virginia -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):89-92. doi: 10.1126/science.1185775.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360107" target="_blank"〉PubMed〈/a〉
    Keywords: Flowers/genetics/microbiology ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Gene Expression Regulation, Plant ; Genes, Fungal ; Genes, Plant ; Gibberellins/metabolism ; Host-Pathogen Interactions ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/genetics/microbiology ; Plant Tumors/*genetics/*microbiology ; Seedlings/genetics/microbiology ; Signal Transduction ; Up-Regulation ; Ustilago/*genetics/*physiology ; Zea mays/*genetics/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-10-21
    Description: The Arabidopsis mutant ttg lacks both trichomes (epidermal hairs) and anthocyanin pigments. Trichomes and anthocyanins are restored by the constitutive expression of the maize transcriptional regulator (R). The expression of an R-glucocorticoid receptor chimeric protein results in a steroid hormone-dependent, conditional allele of R that functions in whole Arabidopsis plants. The response of the chimeric protein to pulses of hormone was used to define the pattern and timing of trichome formation on the developing leaf epidermis. Each adaxial epidermal leaf cell appears to have an equal probability of differentiating into a trichome; there is a temporal zone of decision for trichome cell fate that proceeds as a wave from the tip to the base of developing leaves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lloyd, A M -- Schena, M -- Walbot, V -- Davis, R W -- GM 32422/GM/NIGMS NIH HHS/ -- R37-H600198/PHS HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):436-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939683" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anthocyanins/*biosynthesis/genetics ; Arabidopsis/*cytology/genetics/growth & development/metabolism ; Dexamethasone/*pharmacology ; Gene Expression Regulation, Plant ; Microscopy, Electron, Scanning ; Plant Leaves/*cytology/growth & development/ultrastructure ; Receptors, Glucocorticoid/*physiology ; Recombinant Fusion Proteins ; Trans-Activators/*physiology ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...