ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 165 (1995), S. 323-332 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Highly purified human blood burst-forming units-erythroid (BFU-E) were used to study the effects of interferon γ (IFNγ). IFNγ inhibited erythroid colony formation, cell proliferation, and differentiation of day 3 to day 6 mature BFU-E in a dose-dependent manner. The primitive BFU-E (day 1 and day 2 cells) and later day 7 cells were less affected. IFNγ dose-response experiments demonstrated that the number and size of erythroid colonies were reduced at a concentration of 500 U/ml with more complete inhibition at 1,000 U/ml. Inhibition of day 4 to day 6 erythroid progenitors was first noted by 72 h of incubation with IFNγ, and target cell growth and differentiation continued to decrease with further incubation. IFNγ also induced erythroblast apoptosis which was demonstrated by both nuclear condensation and fragmentation plus flow cytometry with in situ end-labelling. Because day 3 to day 6 cells need stem cell factor (SCF) for development in serum-free culture, the relationship of IFNγ inhibition to this growth factor was investigated. The reduction in the number of erythroid colonies by IFNγ was reversed by SCF although the colony size was not completely re-established. In contrast, interleukin-3 did not have the capacity to overcome the inhibitory effects of IFNγ. Since IFNγ blood levels are elevated in some anemias of chronic disease, IFNγ may have a role in promoting this anemia and its inhibitory effect might be better overcome by SCF plus EP. However, the mechanism by which these growth factors overcome the inhibition of IFNγ, or vice versa, is unknown at the present time. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...