ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) was found to act both independently of and synergistically with the mononuclear phagocyte specific colony stimulating factor (CSF-1) to stimulate the formation of macrophage colonies in cultures of mouse bone marrow cells. In contrast, TPA did not synergize with other CSF subclasses that stimulate the formation of eosinophil, eosinophil-neutrophil, neutrophil, neutrophil-macrophage, and macrophage colonies, nor with either of the two factors required for megakaryocyte colony formation, megakaryocyte CSF, and megakaryocyte colony potentiator. In serum-free mouse bone marrow cell cultures TPA retained the ability to independently stimulate macrophage colony formation. However, TPA-stimulated colony formation was suboptimal and delayed in serum-free cultures that could support optimal colony formation in the presence of CSF-1. In addition, TPA did not directly compete with [125I]CSF-1 at 4°C for its specific, high-affinity receptor on mouse peritoneal exudate macrophages. However, a 2-hour preincubation of the cells with TPA at 37° caused almost complete loss of the receptor. Thus, TPA is able to mimic CSF-1 in its effects on CSF-1 responsive cells in some aspects (the spectrum of target cells, the morphology of resulting colonies, and the ability to down-regulate the CSF-1 receptor) but it is not able to mimic CSF-1 in other ways (TPA alone cannot stimulate the full CSF-1 response, TPA does not stimulate the most primitive CSF-1 responsive cells, and TPA does not bind to the CSF-1 receptor).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 110 (1982), S. 101-104 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: WEHI-3 cell-conditioned medium with the capacity to stimulate megakaryocyte colony formation was separated by Sephadex G-150 column chromatography. The development of colonies containing megakaryocytes was observed only when mixing experiments were performed. Individual fractions did not support megakaryocyte colony growth. The two factors in WEHI-3 CM required for megakaryocyte colony growth had apparent average molecular weights of 35,000 daltons (megakaryocyte CSF) and 100,000 daltons (megakaryocyte potentiator). The results were confirmed in serum-free conditions in which colonies were directly identified in the cultures by acetylcholinesterase staining. Two growth factors may be necessary for the genesis of megakaryocytic colonies.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...