ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 101 (1979), S. 503-513 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Three parameters involved in the production of new ribosomal RNA (rRNA) were measured in Tetrahymena thermophilia: (i) the rate of synthesis of the rRNA precursor, (ii) the rate of processing of the RNA precursor and rRNA intermediates and (iii) the efficiency of utilization of the rRNA precursor in producing mature ribosomal RNA. These parameters were measured in cells in exponential growth and in cells starved in a dilute salt solution. Growing cells synthesize rRNA 20 times faster and process rRNA precursors and intermediates 10 to 15 times more rapidly than do starved cells. Both utilize their rRNA precursors with an efficiency of one in converting them to mature rRNA.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 101 (1979), S. 349-358 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have measured the turnover rate of ribosomal RNA in exponentially growing Tetrahymena thermophila cells, cells entering the plateau phase of growth, and nutrient-deprived (starved) cells. Ribosomal RNA is stable in cells in early log phase growth but it begins to turnover as the cells begin a deceleratory growth phase prior to entering a plateau state. Likewise, rRNA in cells transferred from early log phase growth to a starvation medium begins to be degraded immediately upon starvation. In both cases the degradation of rRNA exhibits biphasic kinetics. A rapid initial exponential degradation with a half time of nine and one-half hours lasting for six hours is followed by a slower exponential degradation with a half-life of 35 hours. When starved cells are transferred to fresh growth medium turnover of rRNA ceases. The evidence presented suggests that the alteration in degradation rate is a regulated process which is most likely independent of the cell cycle.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...