ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 164 (1995), S. 613-619 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The molecular basis of water-permeability in salivary and other exocrine glands is not understood. We have examined two well-studied salivary epithelial cell lines for evidence of a Hg-inhibitable water-permeability pathway. A5 and HSG cells are derived from rat and human submandibular glands, respectively. Only A5 cells are derived from rat and human submandibular glands, respectively. Only A5 cells demonstrated such a pathway. The rate of A5 cell osmotic shrinkage was inhibited about fivefold in the presence of 300 m̈M HgCl2. To determine if this activity was associated with the expression of the prototypical water channel (aquaporin, AQP) AQP1, we used three separate experimental approaches; Northern analysis and reverse transcription-polymerase chain reaction (RT-PCR) analysis of isolated mRNA, and Western analysis of cell membranes. All three methods yielded positive results with A5 cells and negative results with HSG cells. The ∼800 bp product of RT-PCR was analyzed further by sequencing and restriction enzyme digestion. The results were consistent with the previously reported coding region sequence for rat kidney AQP1. The aggregate data demonstrate that marked differences in water-permeability and water channel expression exist in these two salivary epithelial cell lines. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 161 (1994), S. 217-226 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Interferon-γ (IFN-γ) is a product of activated T-lymphocytes, and tumor necrosis factor-α (TNF-α) is a product of both lymphocytes and macrophages. These cell types are often present at sites of tissue damage secondary to chronic infection or autoimmune disease. The purpose of this study was to characterize the effects of TNF-α and IFN-γ on a human submandibular gland epithelial cell line (HSG). IFN-γ caused a concentration-dependent decrease in HSG cell growth (∼70% in 6 days). Conversely, TNF-α alone had little effect on the growth of these cells. When these cytokines were added in combination (20 units/ml TNF-α and 1,000 units/ml of IFN-γ), there was a synergistic antiproliferative effect; no apparent cell growth was observed. The cytokine-induced antiproliferative effect was reversible. After the apparent cessation of cell growth for 3-6 days, removal of the cytokines permitted complete growth recovery. Further, cells that recovered and exhibited growth patterns that were similar to control cells remained susceptible to the antiproliferative effects of the cytokines. Flow cytometry revealed that the percentage of cells in G0/G1 with the combination of cytokines was significantly increased by 24 h. The antiproliferative effect of IFN-γ alone and that of IFN-γ and TNF-α in combination were blocked completely using an antibody to the IFN-γ receptor. A hypothesized mechanism of tissue damage in autoimmune inflammatory disorders is via up-regulation of cell surface markers such as intercellular adhesion molecule type I (ICAM-1) and histocompatibility antigen HLA-DR which can exacerbate the inflammatory process. Treatment of HSG cells with IFN-γ, with or without TNF-α, resulted in increased levels of ICAM-1 and the acquisition of HLA-DR expression. These aggregate data suggest that IFN-γ alone can regulate the expression of cell surface markers involved in the inflammatory process as well as cause a potent yet reversible inhibition of HSG cell growth that is modulated by the presence of TNF-α. © 1994 Wiley-Liss, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...