ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 0730-2312
    Keywords: osteosarcoma cells ; osteocalcin gene ; osteoblasts ; vitamin D response element (VDRE) ; transcription factor complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vitamin D responsive transcription of the bone-specific osteocalcin gene differs markedly in osteosarcoma cells and normal diploid osteoblasts. In osteoblasts the osteocalcin gene is transcribed, and upregulated by Vitamin D, only in post-proliferative cells, but in osteosarcoma cells expression is constitutive. This distinction in transcriptional regulation of the osteocalcin gene correlates with striking differences in the relative representation of two principal Vitamin D-dependent protein/DNA complexes designated V1 and V2 at the Vitamin D responsive element in the osteocalcin promoter. Formation of both complexes is Vitamin D dependent and they contain the Vitamin D receptor as well as an RXR related protein. Pore size exclusion and sedimentation velocity analyses suggest that the V1 and V2 complexes represent oligomeric protein assemblies (respectively, tetramers and trimers), and reflect primarily DNA-directed association of the monomeric protein components at the osteocalcin Vitamin D responsive element. UV crosslinking and methylation interference analyses of the V1 and V2 complexes at the osteocalcin Vitamin D responsive element indicate differences in protein/DNA recognition. For example, the V1 complex interacts with both steroid half-elements, whereas the V2 complex appears to recognize the proximal half-element. Our findings suggest variations in protein/protein and protein/DNA interactions of the VDR and RXR related complexes V1 and V2 at the osteocalcin Vitamin D responsive element that reflect unique properties of the osteosarcoma and normal diploid osteoblast phenotype. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 184-196 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; transcription ; mRNA stability ; histone ; differentiation ; bone development ; osteoblast ; promoter factors ; collagen ; osteosarcoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of dexamethasone on expression of the osteocalcin gene which encodes the most abundant non-collagenous and only reported bone-specific protein was examined in ROS 17/2.8 osteosarcoma cells which express a broad spectrum of genes related to bone formation. Consistent with previous reports, quantitation of cellular osteocalcin mRNA levels by Northern blot analysis, osteocalcin gene transcription by activity of the osteocalcin gene promoter fused to a chloramphenicol acetyl-transferase (CAT) mRNA coding sequence following transfection into ROS 17/2.8 cells, and osteocalcin biosynthesis by radioimmunoassay indicate that dexamethasone in a concentration range of 10-6 to 10-9 M only modestly modifies basal levels of osteocalcin gene expression. However, dexamethasone significantly inhibits these parameters of the vitamin D-induced upregulation of osteocalcin gene expression in both proliferating and in confluent ROS 17/2.8 cells. In this study, we observed that the extent to which abrogation of the vitamin D response occurs is dependent on basal levels of osteocalcin gene expression as reflected by a complete inhibition of the vitamin D-induced upregulation in a ROS 17/2.8K subline with low basal expression and only a partial reduction of the vitamin D stimulation in a ROS 17/2.8C subline with eightfold higher levels of basal expression. This effect of glucocorticoid appears to be at the transcriptional and post-transcriptional levels as demonstrated by a parallel decline in the cellular representation of osteocalcin mRNA, osteocalcin gene promoter activity, and osteocalcin biosynthesis. The complexity of the glucocorticoid effect on vitamin D-mediated transcriptional properties of the osteocalcin gene is indicated by persistence of sequence-specific protein-DNA interactions at two principal osteocalcin gene promoter regulatory elements, the osteocalcin (CCAAT) box which modulates basal level of transcription, and the vitamin D responsive element, where vitamin D-mediated enhancement of osteocalcin gene transcription is controlled.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 0730-2312
    Keywords: CCAAT box ; osteocalcin promoter ; histone promoter ; regulatory elements ; vitamin D gene regulation ; hormone control ; transcription factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Several lines of evidence are presented which support involvement of the nuclear matrix in regulating the transcription of two genes, histone and osteocalcin, that are reciprocally expressed during development of the osteoblast phenotype. In the 5′ regulatory region of an H4 histone gene, which is expressed in proliferating osteoblasts early during the developmental/differentiation sequence, a dual role is proposed for the nuclear matrix binding domain designated NMP-1 (-589 to -730 upstream from the transcription start site). In addition to functioning as a nuclear matrix attachment site, the sequences contribute to the upregulation of histone gene transcription, potentially facilitated by concentration and localization of an 84kD ATF DNA binding protein. A homologous nuclear matrix binding domain was identified in the promoter of the osteocalcin gene, which is expressed in mature osteoblasts in an extracellular matrix undergoing mineralization. The NMP binding domain in the osteocalcin gene promoter resides contiguous to the vitamin D responsive element. Together with gene and transcription factor localization, a model is proposed whereby nuclear matrix-associated structural constraints on conformation of the osteocalcin gene promoter facilitates vitamin D responsiveness mediated by cooperativity at multiple regulatory elements.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 171-182 
    ISSN: 0730-2312
    Keywords: caffeine ; bone matrix implants ; delayed ossification ; osteoblasts ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have addressed questions raised by the observation in fetal rats of delayed ossification induced by caffeine at maternal doses above 80 mg/kg body weight per day. The effect of caffeine on endochondral bone development and mineralization has been studied in an experimental model system of bone formation which involves implantation of demineralized bone particles (DBP) in subcutaneous pockets of young growing rats. Caffeine's effects on cellular events associated with endochondral ossification were examined directly by quantitating cellular mRNA levels of chondrocyte and osteoblast growth and differentiation markers in DBP implants from caffeine-treated rats harvested at specific stages of development (day 7 through day 15). Oral caffeine administration to rats implanted with DBP resulted in a dose dependent inhibition of the formation of cartilage tissue in the implants. Histologic examination of the implants revealed a decrease in the number of cells which were transformed to chondrocytes compared to control implants. Those cartilaginous areas that did form, however, proceeded through the normal sequelae of calcified cartilage and bone formation. At the 100 mg/kg dose, cellular levels of mRNA for histone, collagen type II, and TGFβ were all reduced by greater than 40% of control implants consistent with the histological findings. Alkaline phosphatase activity in the implants and mRNA levels for proteins reflecting the hypertrophic chondrocyte and bone phenotype, collagen type I and osteocalcin were markedly decreased compared to controls. Lower doses of 50 and 12.5 mg/kg caffeine also resulted in decreased cellular proliferation and transformation to cartilage histologically and reflected by significant inhibition of type II collagen mRNA levels (day 7). The effects of caffeine on gene expression observed in vivo during the period of bone formation (day 11 to day 15) in the DBP model were similar to the inhibited expression of H4, alkaline phosphatase, osteocalcin, and osteopontin found in fetal rat calvarial derived osteoblast cultures following 24 hour exposure of the cultures to 0.4 mM caffeine. Thus the observed delayed mineralization in the fetal skeleton associated with caffeine appears to be related to an inhibition of endochondral bone formation at the early stages of proliferation of undifferentiated mesenchymal cells to cartilage specific cells as well as at later stages of bone formation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 0730-2312
    Keywords: pre-adipocyte 3T3-L1 cells ; TGFβ1 ; collagen ; fibronectin ; insulin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Pre-adipocyte 3T3-L1 cells, after an appropriate induction stimulus, proceed through a defined change in morphology as differentiation progresses. Transforming growth factor β1 (TGFβ1) is able to block the morphological and biochemical changes which occur with differentiation of these cells if given within 36-40 h of induction [Ignotz and Massague (1985): Proc Natl Acad Sci USA 82:8530-8534]. To begin to elucidate the role of the extracellular matrix in adipogenesis, as well as the mechanism whereby TGFβ1 inhibits differentiation, we examined the expression of two extracellular matrix genes, type I (α1) procollagen and fibronectin, as well as endogenous TGFβ1. Confluent cells were induced to differentiate by treatment with insulin, dexamethasone, and isobutylmethylxanthine in the presence or absence of TGFβ1. Following 6 days of treatment, the cells in the differentiated group acquired the rounded shape of mature adipocytes; the cytosol of these cells also contained numerous lipid-filled vesicles, as demonstrated by oil red O staining. Cells treated with the differentiation compounds in the presence of TGFβ1 maintained the fibroblast-like appearance of control cells and did not stain with oil red O. At the level of gene expression, both procollagen and fibronectin mRNAs were down-regulated during differentiation of 3T3-L1 cells. When cells from the control or differentiation groups were treated with TGFβ1, there was a 2-5-fold induction of procollagen and fibronectin mRNAs throughout the 6-day time course. No change in type I procollagen transcription was observed by nuclear run-on analysis, suggesting that the increase in procollagen mRNA with TGFβ1 treatment was due to a post-transcriptional process(es). However, both transcriptional and post-transcriptional components were observed in the regulation of fibronectin gene expression by TGFβ1. In addition, TGFβ1 was found to positively regulate its own expression, as treatment of the cells with TGFβ1 enhanced endogenous TGFβ1 expression and prevented the small decrease in TGFβ1 mRNA levels which occurred early during the differentiation program. Thus, our data demonstrate that down-regulation of type I procollagen, fibronectin, and TGFβ1 gene expression was prevented during TGFβ inhibition of 3T3-L1 differentiation. Taken together, these data suggest that TGFβ may inhibit differentiation of 3T3-L1 cells by maintaining the fibroblast-like extracellular matrix, thus preventing the changes in cell shape that accompany differentiation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 0730-2312
    Keywords: cardiac assist device ; pseudointima ; hemocompatibility ; polyurethanes ; myofibroblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The development of implantable cardiac assist devices for prolonged circulatory support has been impeded by the problem of excessive thrombogenesis on the blood-prosthetic interface, with subsequent embolization. To overcome this obstacle, a ventricular assist device has been developed with textured blood-contacting surfaces to encourage the formation of a tightly adherent, hemocompatible, biological lining. In this study, we applied molecular biological techniques, in conjunction with conventional ultrastructural and biochemical techniques, to characterize the biological linings associated with the blood-contacting surfaces of 11 of these devices, which had been clinically implanted for durations ranging from 21 to 324 days. No clinical thromboembolic events or pump-related thromboembolism occurred. Biological linings developed on the textured surfaces composed of patches of cellular tissue intermingled with areas of compact fibrinous material. In addition, islands of collagenous tissue containing fibroblast-like cells appeared after 30 days of implantation. Many of these cells contained microfilaments with dense bodies indicative of myofibroblasts. RNA hybridization analyses demonstrated that the colonizing cells actively expressed genes encoding proteins for cell proliferation (histones), adhesion (fibronectin), cytoskeleton (actin, vimentin) and extracellular matrix (types I and III collagen). Linings, which never exceeded 150 μm in thickness, remained free of pathological calcification. Textured blood-contacting surfaces induced the formation of a thin, tightly adherent, viable lining which exhibited excellent long-term hemocompatibility.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 0730-2312
    Keywords: phosphorylation ; cell cycle ; proliferation ; transcription ; histone ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 46 (1991), S. 199-205 
    ISSN: 0730-2312
    Keywords: effector genes ; suppressor genes ; cancer ; oncogenes ; v-fos ; rhodamine 123 ; non-tumorigenic revertants ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Much has been learned about the molecular basis of cancer from the study of the dominantly acting viral and cellular oncogenes and their normal progenitors, the proto-oncogenes. More recent studies have resulted in the isolation and characterization of several genes prototypic of a second class of cancer genes. Whereas oncogenes act to promote the growth of cells, members of this latter class of genes act to inhibit cellular growth and are believed to contribute to the tumorigenic phenotype only when their activities are absent. This new class of cancer genes is referred to by a number of different names including; anti-oncogenes, recessive oncogenes, growth suppressor genes, tumor suppressor genes and emerogenes. Although only a few of these cancer genes have been identified, to date, it is likely that many additional genes of this class await identification. A third class of genes, necessary for the development of the cancer phenotype, is comprised of the transformation effector genes. These are normal cellular genes that encode proteins that cooperate with or activate oncogene functions and thereby induce the development of the neoplastic phenotype. The inactivation of transformation effector functions would therefore inhibit the ability of certain dominantly acting oncogenes to transform cells. The approaches outlined here describe functional assays for the isolation and molecular characterization of transformation effector and suppressor genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 67 (1966), S. 207-215 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: An attempt is made to summarize and synthesize salient points from the conference. Considering the immunoglobulin-synthesizing and hemoglobin-synthesizing cell systems in parallel, first attention is given to aspects of cellular differentiation that deal with specialization in the formation of the predominant molecular products, the immunoglobulins and the hemoglobins. Primary structural considerations point to similar genetic mechanisms as the basis for phylogenetic diversity and similarities within each of the two classes of macromolecules, and to similar restrictions on the sorts of amino acid substitutions that can be tolerated while retaining the funcional integrity of the molecules. In the immunoglobulins, the appearance of “variable regions” in the component polypeptide chains, presumably associated with the diverse specificities required of these molecules in order that they may serve their functions, provides additional challenges for interpretation, and the significance of present knowledge in this context is evaluated. Other aspects of cellular differentiation are approached by way of the developmental shifts in molecular products found in both systems, and the explanations that have been suggested for these shifts. A striking difference in the two systems, the phenomenon of allele exclusion in immunoglobulin control, is discussed. The review concludes with discussions of more complicated aspects of differentiation in these cell series: the role of hormones and other humoral substances, particularly with regard to the immunoglobulin-synthesizing system, deriving from the thymus; parallels among cell-lineage patterns in the various hematopoietic series; and evidences of the causes of senescence in the immunoglobulin-synthesizing system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 121 (1984), S. 226-234 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Stimulation of an amiloride-sensitive Na+ influx pathway, which mediates Na+/H+ exchange, has been postulated to be an important step in the initiation of DNA synthesis in quiescent human fibroblasts. If the elevation of intracellular Na+ or the alkalinization of intracellular pH resulting from the activation of this system is a trigger for subsequent mitogenic events, then its inactivation may also be important to cellular functions. We investigated the duration of the activation of Na+ influx by serum in human foreskin fibroblasts (HSWP). It was found that activation of Na+ influx by 10% serum was transient, declining with a t1/2 = 15 min. Similarly, the Na+ content of the cells rose rapidly following serum addition and decreased with a t1/2 = 15 min. In addition, both the lys-bradykinin- and the vasopressin-stimulated Na+ influx and Na+ content declined with a t1/2 of approximately 15 min. Similar results were obtained using both Tris-buffered and Hepes-buffered, amino-acid-free EMEM. Finally, the above experiments were repeated under conditions normally used to assess the mitogenic response of cells. It was found that in cells arrested in G0 by serum deprivation in CO2-buffered EMEM, the serum activated Na+ flux was also transient with a t1/2 of approximately 20 min. The desensitization of cells to serum could be readily (t1/2 = 20′) reversed by a subsequent incubation of cells in serum-free medium. Stimulation of Na+ influx by both the divalent cation ionophore A23187 and the phospholipase activator melittin in also desensitized rapidly, suggesting the process is independent of receptor downregulation. The desensitization during serum preincubation occurred in both low Na+ and low pH medium suggesting that the process is not due to negative feedback on the transport system via a rise in cellular Na+ concentration or a rise in intracellular pH. Although the mechanism of desensitization is at present not known, it is likely to be a physiologically important event.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...