ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
  • Marine Geosciences and Applied Geophysics  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 77 (1971), S. 337-352 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Intracellular microelectrode studies of passive membrane properties and action potential generation were carried out on cloned and uncloned mouse neuroblastoma cells in tissue culture. The cloned cells were studied between the eighth and tenth months and the uncloned cells between the third and fifth weeks after primary dissociation. Electrophysiologic measurements of cell membrane properties were made by passing stimulating current pulses across the cell membrane from an intracellular microelectrode and recording simultaneously from the same electrode, by means of a bridge circuit, the changes in membrane potential. The range of responses to electrical stimulation varied from passive increases in membrane potential to repetitive firing of action potentials. A 20 fold range in spike generating capability was found. Passive membrane properties (membrane potential, specific membrane resistivity, and specific membrane capacitance) were similar to those of sympathetic neurons in intact preparations. Seventy-nine percent of the cloned cell line compared to 94% of the uncloned line were capable of generating action potentials. Less than 2% of the cloned cells showed repetitive firing whereas 23% of the uncloned cells had this property. As in several types of normal neurons, the action potential mechanism was largely, although not completely, blocked by iontophoretic and bath applied tetrodotoxin.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 77 (1971), S. 353-362 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Dissociated mouse neuroblastoma cells were studied in vitro by using intracellular microelectrodes for electrical stimulation and recording. Some, but not all cells, which exhibited well developed action potentials to electrical stimulation also showed changes in membrane potential to iontophoretically applied acetylcholine (ACh). The types of responses to ACh varied. Short latency depolarizing responses to pulses of ACh (similar to those obtained with skeletal muscle) as well as sustained depolarization to steady ACh application (D response) occurred. A longer latency prolonged hyperpolarizing response (H response) and bi- and triphasic combinations of H and D responses were also seen.Pairs of cells showing morphologic contact were tested for the occurrence of effective synaptic coupling by placing intracellular microelectrodes in each cell. In none of 95 cases tested did spike activity produced by direct electrical stimulation of one cell elicit a synaptic potential of 200 μv or more in the other.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-01
    Description: Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...