ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Detergent insolubility  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 36 (1988), S. 51-58 
    ISSN: 0730-2312
    Keywords: lipid phases ; sphingolipids ; Golgi complex ; plasma membrane polarity ; membrane domain formation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier apparently resides in the outer, exoplasmic leaflet of the plasma membrane bilayer. First data are now available on the generation of these differences in Madin-Darby canine kidney (MDCK) cells, grown on filter supports. Experiments in which fluorescent precursors of apical lipids were introduced into the cell have demonstrated that upon biosynthesis apical lipids are sorted from basolateral lipids in an intracellular compartment. In this paper we present a model for the sorting process, the central point of which is that the two sets of lipids laterally segregate into microdomains that bud to form vesicles delivering the lipids to the apical and the basolateral plasma membrane domains, respectively.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0173-0835
    Keywords: Two-dimensional polyacrylamide gel electrophoresis ; Nanoelectrospray tandem mass spectrometry ; Rafts ; Detergent insolubility ; Protein sequencing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Epithelial cells have to deliver newly synthesized proteins to the apical and the basolateral plasma membrane domains of the polarized cell surface. Sorting takes place in the trans-Golgi network and at least two vesicular carriers exist for apical and basolateral delivery. After immuno-isolation, the composition of these vesicle preparations was analyzed by two-dimensional (2-D) gel electrophoresis and detergent extraction. In this paper we compare the constituents of detergent-insoluble complexes in different cell lines of polarized or nonpolarized origin and present the identification of five previously uncharacterized proteins. We show that our protein identification strategy can be successfully applied to the problem of small hydrophobic proteins from organisms that have not been substantially sequenced. The high sensitivity of nanoelectrospray tandem mass spectrometry allowed us to identify two proteins that belong to the p23/p24 family of putative cargo receptors for vesicular trafficking. Furthermore we have mapped CD9 and CD81, two members of a large family of proteins consisting of highly hydrophobic four transmembrane proteins. In addition we have identified caveolin-2 as a constituent of basolateral transport vesicles. We have also extended our analysis of immunoisolated vesicles to a more basic pI range and show that this region on 2-D gels is devoid of proteins. With these approaches and with the previously published data we have now identified most of the major low molecular weight proteins recovered in detergent-insoluble glycolipid-enriched complexes.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...