ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Casuarina cunninghamiana  (1)
  • HFPAr13  (1)
  • 1
    ISSN: 1573-5036
    Keywords: actinorhizae ; Casuarina cunninghamiana ; Frankia ; nitrogen fixation ; oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of time after exposure to acetylene and of nodule excision were examined using a flow-through system. After a transient depression in the rate of acetylene reduction that began about 1.5 min after exposure to acetylene, the rate recovered to 98% of the initial maximum value after 40 min. After nodule excision the rate stabilized to 90% of the initial maximum value observed in the intact plant. Excised nodules, measured at 6-min intervals in a closed system, with frequent changes of the gas mixture, were used for the remaining experiments. Acetylene reduction by the nodules increased rapidly as temperature was increased between 6 and 26°C. Between 26 and 36°C there was relatively little effect of temperature on acetylene reduction. Nodules and cultures ofFrankia were compared with respect to the effect of temperature and pO2 (partial pressure of oxygen) on oxygen uptake. Cultures ofFrankia were grown on a nitrogen-free medium at either 0.3 kPa O2 (vesicles absent) or 20 kPa O2 (vesicles present). Oxygen uptake by nodules (vesicles absent) and by vesicle-containing cultures was strongly dependent on pO2 at values below 20 kPa. This suggests the presence of a barrier to oxygen diffusion. Oxygen uptake was dependent on temperature as well as on pO2, but the Q10 was much larger for the cultures than for the nodules. This suggests that vesicles or related structures are not the source of the diffusion barrier in Casuarina nodules. Respiration by cultures ofFrankia lacking vesicles became O2-saturated at low pO2 values. Thus these cultures did not have a significant diffusion barrier. From these results it is concluded that nodules ofCasuarina cunninghamiana have a barrier to oxygen diffusion supplied by the host tissue and not byFrankia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Batch culture ; Frankia ; HFPAr13 ; Nitrogenase ; Vesicles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Kinetics of growth and nitrogenase induction inFrankia sp. Ar13 were studied in batch culture. Growth on defined medium with NH 4 + as the N source displayed typical batch culture kinetics; however, a short stationary phase was followed by autolysis. Removal of NH 4 + arrested growth and initiated vesicle differentiation. Vesicle numbers increased linearly and were paralleled by a rise in nitrogenase (acetylene reduction) activity. Nitrogenase activity (10 nM C2H4·mg protein−1·min−1) was sufficient to support growth on N2 and protein levels rose in parallel with nitrogenase induction. Optimal conditions for vesicle and nitrogenase induction were investigated. Maximum rates of acetylene reduction were obtained with 5 to 10 mM K2 HPO4/KH2PO4, 0.1 mM CaCl2 and MgSO4. The optimum pH for acetylene reduction and respiration was around 6.7. The amount (5 to 10 μg protein/ml) and stage (exponential) of growth of the ammonium-grown inoculum strongly influenced the subsequent development of nitrogenase activity. Propionate was the most effective carbon source tested for nitrogenase induction. Respiration in propionate-grown cells was stimulated by CO2 and biotin, suggesting that propionate is metabolized via the propionyl CoA pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...