ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reichstein, Markus -- England -- Nature. 2010 Mar 11;464(7286):145. doi: 10.1038/464145e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220802" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*metabolism ; *Climate Change ; Humans ; Models, Theoretical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-07-07
    Description: Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beer, Christian -- Reichstein, Markus -- Tomelleri, Enrico -- Ciais, Philippe -- Jung, Martin -- Carvalhais, Nuno -- Rodenbeck, Christian -- Arain, M Altaf -- Baldocchi, Dennis -- Bonan, Gordon B -- Bondeau, Alberte -- Cescatti, Alessandro -- Lasslop, Gitta -- Lindroth, Anders -- Lomas, Mark -- Luyssaert, Sebastiaan -- Margolis, Hank -- Oleson, Keith W -- Roupsard, Olivier -- Veenendaal, Elmar -- Viovy, Nicolas -- Williams, Christopher -- Woodward, F Ian -- Papale, Dario -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):834-8. doi: 10.1126/science.1184984. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. christian.beer@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603496" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Intelligence ; Atmosphere ; Carbon Dioxide/*metabolism ; *Climate ; Climatic Processes ; *Ecosystem ; Geography ; Models, Biological ; Models, Statistical ; Neural Networks (Computer) ; Oxygen Consumption ; *Photosynthesis ; Plant Leaves/*metabolism ; Plants/*metabolism ; Temperature ; Trees/metabolism ; Uncertainty ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-07
    Description: The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahecha, Miguel D -- Reichstein, Markus -- Carvalhais, Nuno -- Lasslop, Gitta -- Lange, Holger -- Seneviratne, Sonia I -- Vargas, Rodrigo -- Ammann, Christof -- Arain, M Altaf -- Cescatti, Alessandro -- Janssens, Ivan A -- Migliavacca, Mirco -- Montagnani, Leonardo -- Richardson, Andrew D -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):838-40. doi: 10.1126/science.1189587. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. mmahecha@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603495" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; *Climate ; Ecological and Environmental Processes ; *Ecosystem ; Models, Biological ; Models, Statistical ; Photosynthesis ; Plants/*metabolism ; Soil/analysis ; Soil Microbiology ; *Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-23
    Description: Atmospheric monitoring of high northern latitudes (above 40 degrees N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forkel, Matthias -- Carvalhais, Nuno -- Rodenbeck, Christian -- Keeling, Ralph -- Heimann, Martin -- Thonicke, Kirsten -- Zaehle, Sonke -- Reichstein, Markus -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):696-9. doi: 10.1126/science.aac4971. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. matthias.forkel@geo.tuwien.ac.at ncarval@bgc-jena.mpg.de. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. CENSE, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal. matthias.forkel@geo.tuwien.ac.at ncarval@bgc-jena.mpg.de. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. ; Scripps Institution of Oceanography, La Jolla, CA 92093, USA. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. Department of Physical Sciences, University of Helsinki, Helsinki, Finland. ; Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. Michael-Stifel-Center Jena for Data-driven and Simulation Science, 07743 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797146" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Cycle ; Carbon Dioxide/*metabolism ; *Climate Change ; Ecosystem ; Environmental Monitoring ; Photosynthesis ; Plants/*metabolism ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.
    Keywords: Geophysics
    Type: GSFC.JA.5767.2011 , Geophysical Research Letters (ISSN 0094-8276); 38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.
    Keywords: Geophysics
    Type: GSFC.JA.5761.2011 , Journal of Geophysical Research (ISSN 0148-0227); 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...