ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-17
    Description: The Agnano–Monte Spina tephra AMST , dated at 4100 years BP by Arr Ar and C AMS techniques, is the product of the highest-magnitude eruption in the Campi Flegrei caldera CFc. during its last epoch of activity 4800–3800 years BP.. The sequence alternates magmatic and phreatomagmatic pyroclastic-fallout, -flow and -surge beds and bedsets. Two main pumice-fallout deposits with variable easterly-to-northeasterly dispersal axes are about 10 cm thick at 42 km from the vent area. High particle concentration pyroclastic currents were confined to the caldera depression; lower concentration flows overtopped the morphological boundary of the caldera and traveled at least 15 km over the surrounding plain. The unit is subdivided into six members, named A through F in stratigraphic sequence, based upon their sedimentological characteristics. Isopachs and isopleths maps suggest a vent location in the Agnano plain. A volcano-tectonic collapse begun during the course of the eruption, took place along the faults of the northeastern sector of the resurgent block within the CFc, and generated the Agnano plain. The early erupted trachytic magma had a homogeneous alkali–trachytic composition, whereas later-erupted magma shows small-scale hetereogeneities. Trace elements and Sr-isotope compositions, indicate that two isotopically distinct magmas, one alkali–trachytic and the other trachytic, were tapped and partially mixed during the eruption. The small volume 1.2 km3 DRE. of erupted magma and the structural position of the vent suggest that the eruption was fed by a dyke intruded along a normal fault in the sector of the resurgent block under a tensional stress regime. q1999 Elsevier Science B.V. All rights reserved
    Description: Published
    Description: 269–301
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Agnano–Monte Spina tephra ; Campi Flegrei caldera ; magma ; pyroclastic-fallout; pumice ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection– diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA reanalysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.
    Description: Published
    Description: 259–273
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout hazard ; Tephra loading ; Campi Flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera is an active and restless volcano in the densely inhabited Neapolitan area of southern Italy. Because of the very high value (lives, properties, infrastructures, etc.) exposed to potential volcanic hazards, it is one of the areas at highest volcanic risk on Earth. In such a situation we have made an attempt to contribute to assessment of its volcanic hazards by providing a quantitative probabilistic longterm forecast of style and size of the next eruption. We have evaluated the most relevant physical parameters of the 22 explosive eruptions of the Campi Flegrei caldera over the past 5 ka. This time span has been taken as the reference period for volcanic hazards assessment on the basis of the volcanic and deformation history of the caldera. The evaluated parameters include dispersal, volume and density of the pyroclastic deposits, volume of erupted magma, total erupted mass, and eruption magnitude. The obtained results permit a size classification of the explosive eruptions, which are grouped into three sizes: small, medium, and large. On the basis of the reconstructed eruption dynamics, we have considered a type event(s) representative of each size class and hypothesized the style of the next event. An effusive eruption will likely generate a dome or very small lava flows, while an explosive event of any size very probably will produce particles fallout and flowage of pyroclastic density currents. Using a Bayesian inference procedure, we have assigned a conditional probability of occurrence to each of the eruption size classes. A small-size explosive eruption is the most likely event with a probability of about 60%; a large-size explosive eruption is the least likely event with a probability of about 4%; a medium-size explosive eruption has a probability of occurrence of about 25%; an effusive eruption has about 11% probability of occurrence.
    Description: Published
    Description: 265–276
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazards assessment ; eruption size ; eruption style ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Astroni volcano was built through seven eruptions that generated pyroclastic deposits and lava domes within the Campi Flegrei caldera (southern Italy) 4.1–3.8 ka BP. Whole-rock geochemical and B–Sr–Nd isotopic investigations were carried out on representative samples of all seven eruptions. The products vary from tephriphonolites to phonolites, and from latites to trachytes. They show textural, mineralogical and isotopic evidence of disequilibrium, including distinct clinopyroxene populations, rounded and/or resorbed plagioclase and alkali-feldspar, and reverse-zoned phenocrysts of all these mineral phases. The Sr, Nd and B isotopic composition of whole rocks is variable and correlated with the degree of chemical evolution, suggesting open-system processes in addition to fractional crystallisation. Moreover, significant Sr-isotopic disequilibrium between the phenocrysts and glass has been documented for one sample. The chemostratigraphy of the products indicates that Astroni eruptions 1 through 5 were fed by magmas of trachytic to phonolitic composition that were less enriched in radiogenic Sr and 11B up-section. This variability has been interpreted as the result of mingling between at least two distinct magmatic endmembers, one more evolved and the other less evolved. Another heterogeneous batch of magma, resulting from almost complete mixing between the same two end-members, was drained during eruptions 6 and 7. The more evolved end-member, characterised by 87Sr/86Sr≥0.7075, 143Nd/144Nd≤0.51247 and δ11B≥−8‰, was very similar to the magma that fed the final phases of the Agnano–Monte Spina eruption, which occurred a few centuries earlier in the Astroni vent area. The less evolved end-member had 87Sr/ 86Sr≤0.70726, 143Nd/144Nd≥0.51251 and δ11B≤10‰, and was likely derived by fractional crystallisation of a mantle-derived magma. An abrupt decrease in both the Sr isotope ratio and the Th content, detected at the transition between Unit 4 and 5, suggests that another magma with a 87Sr/86Sr ratio intermediate between those of the two identified end-members may have been involved in Astroni activity. The more evolved endmember is interpreted as a residue of the Agnano–Monte Spina eruption that was invaded by either the intermediate or the less evolved magmatic end-member, promoting mingling and triggering Astroni activity. This study of Astroni provides insights for both short- and long-term volcanic hazard assessment, as the Astroni volcano is the best example of a very close sequence of eruptions from the same vent area in the Campi Flegrei caldera.
    Description: Published
    Description: 135–151
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; B–Sr–Nd isotope geochemistry ; Magma mingling/mixing ; Chemostratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-28
    Description: The Campi Flegrei caldera is a restless, nested structure resulting from two major collapses related to the Campanian Ignimbrite 37,000 years BP. and the Neapolitan Yellow Tuff 12,000 years BP. eruptions, respectively. Detailed stratigraphical, structural, volcanological and 14C AMS. geochronological studies, devoted to the reconstruction of the volcanic and deformational history of the Campi Flegrei caldera in the past 12,000 years have been carried out. The results of these studies show that in this time span, intense both volcanic and volcano-tectonic activity was confined inside the Neapolitan Yellow Tuff caldera. Volcanism was concentrated in epochs of intense activity, alternating to periods of quiescence. The I epoch lasted from 12,000 to 9500 years BP giving rise to 34 explosive eruptions, each every 70 years on average. During the II epoch, dated between 8600 and 8200 years BP, six explosive eruptions took place at an average interval of 65 years. The III epoch lasted from 4800 to 3800 years BP and produced 16 explosive and four effusive eruptions which followed each other at mean intervals of 50 years. Eruption vents of the I epoch were located mostly along the marginal faults of the Neapolitan Yellow Tuff caldera, while those of the II epoch aligned on the northeastern sector of this margin. During the III epoch volcanism was confined in the northeastern sector of the Neapolitan Yellow Tuff caldera floor. The caldera floor is disjointed in blocks with variable vertical movements by fault and fracture systems mainly trending NE–SW and NW–SE. The still active resurgence of the caldera floor began soon after its collapse. Onset of both II and III epoch of activity coincides with increase in resurgence rate of La Starza marine terrace, the most uplifted part of the resurgent block.
    Description: Published
    Description: 221-246
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; volcanism; ; deformation ; chronostratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: To develop a model of both the structure and evolution of the Campi Flegrei caldera (CFc) magmatic feeding system, geochronological, geochemical and Sr, Nd, Pb and B isotopic data of representative volcanic products of the past 15 ka have been combined with geophysical and melt inclusion literature data, structural setting and dynamics of the resurgent caldera. According to previous petrological data, the CFc magmatic feeding system consists of a deep reservoir, in which mantle-derived K-basaltic parental magmas differentiate to shoshonite, latite and trachyte, through combined crustal contamination and fractional crystallization processes, and shallowreservoirswhere the evolvedmagmas further differentiate andmingle/mix before eruptions. The Sr,Nd, Pb, and B isotope data allowrecognition of three distinctmagmatic components.One component is believedto be residualmagmafromtheNeapolitanYellowTuff (NYT) caldera forming eruption. The NYT component (87Sr/86Sr of 0.70750–53, 143Nd/144Nd ratio of ca. 0.51246, 206Pb/204Pb of ca. 19.04 and δ11B of ca. –7.9‰), has been the most prevalent component over the past 15 ka being mixed, in most cases, with the other two components. One of these other components is best recognized in the Minopoli 2 magma, first erupted 10 ka ago. Minopoli 2 magma is shoshonitic in composition and is the most enriched in radiogenic Sr (87Sr/86Sr of ca. 0.70860) and unradiogenic Nd and Pb (143Nd/144Nd ratio of ca. 0.51236, 206Pb/204Pb of ca. 18.90), and is characterised by δ11B value of ca. –7.32‰. The third component is trachytic in composition and has higher 206Pb/204Pb (ca. 19.08), lower 87Sr/86Sr (ca. 0.70726) and δ11B (−9.8‰) and higher 143Nd/144Nd (ca. 0.51250), with respect to the NYT component. This third component is best recognized in the Astroni 6 magma and did not appear until ca. 4 ka. The identified isotopically distinct magmatic components were erupted in different sectors of the CFc. During both I (b14.9–9.5 ka) and II (8.6–8.2 ka) epochs of volcanic activity,magmas similar to the NYT component, and those resulting from mixing between Minopoli 2 and NYT components were erupted from vents located mostly on the marginal faults of the NYT caldera. During the III epoch (4.8–3.8 ka) magmas either similar to NYT, or resulting from mixing between Astroni 6 and NYT components were erupted from vents located along faults bordering the La Starza resurgent block and, subordinately, the NYT caldera. Moreover, magmas resulting from mixing betweenMinopoli 2 and NYT components were erupted fromvents located along NE–SW regional faults activated during caldera resurgence. The inferred present structure of the feeding system is characterised by a deep reservoir, whose top is at about 8 kmdepth, that hosts shoshonitic–trachyticmagmas. Remnants of the NYT magma reside at shallower depth in different sectors of the crust underlying CFc, and were sometimes intercepted by volatile-rich magmas of deep provenance during the three epochs of CFc volcanic activity.
    Description: Published
    Description: 227-241
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; Magmatic system ; Caldera structure ; Geochemistry ; Isotopes ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-03
    Description: The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morphobathymetric and seismostratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure formed during the shallow emplacement of the Monte Nuovo feeding dike. We also infer that the high-angle bordering faults that generated the SdF relief now preferentially allow the ascent of hot brines (with an equilibrium temperature of 1798C), thereby sustaining hydrothermal degassing on the seafloor. Systematic vertical seawater profiling shows that hydrothermal seafloor venting generates a sizeable CO2, pH, and temperature anomaly in the overlying seawater column. Data for the seawater vertical profile can be used to estimate the CO2 and energy (heat) outputs from the SdF area at 50 tons/d ( 0.53 kg/s) and 80 MW, respectively. In view of the cause-effect relationship with the Monte Nuovo eruption, and the substantial gas and energy outputs, we consider that the SdF hydrothermal system needs to be included in monitoring programs of the ongoing CFc unrest.
    Description: Published
    Description: 4153–4178
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal fluid ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: New geochemical and Sr-isotope data have been acquired on samples representative of volcanic units erupted inside the resurgent Campi Flegrei caldera CFc. over the past 12 ka. These data, integrated with previous published petrological, and with newly acquired geochronological, volcanological and geothermal data, shed light on the nature and timing of the processes that controlled the evolution of the Phlegraean magmatic system. In the past 12 ka, three isotopically and geochemically distinct magmatic components were erupted at the CFc as either homogeneous or mixed magma batches. One component, Campanian Ignimbrite component CIc. 87Srr86Srs0.70735–0.70740., is similar to the trachytic magma extruded during the first phase of the Campanian Ignimbrite CI. eruption 37 ka.. A second component, Neapolitan Yellow Tuff component NYTc. 87Srr86Srs0.70750–0.70757., is similar to the latitic–alkali–trachytic magma batches extruded during the course of the Neapolitan Yellow Tuff NYT. eruption 12 ka.. A third component, Minopoli component MIc. 87Srr86Srf0.7086., is similar to the trachybasaltic magma of the Minopoli 2 MI. eruption 9.7 ka.. These components were erupted as either single batches of magma, or mixed CI–NYT or MI–NYT batches of magma, through vents located either along the structural boundary of the NYT caldera or inside the NYT caldera, mainly on portions of the resurgent block under extensional stress. The CI and NYT components represent residual portions of older, large-volume magma reservoirs which have fed eruptions since about 60 and 15 ka, respectively. The least-evolved MI component was erupted only during the 12–9.5 ka and 8.6–8.2 ka epochs of activity, through vents located on a NE–SW regional fault system. This component could represent a deeper reservoir tapped by the NE–SW regional fault system reactivated after the NYT caldera collapse. Deeper MI and shallower CI and NYT magmatic systems interacted by mixing among batches of magma during their rise to surface. Overall, the data suggest that the CFc magmatic system today is characterized by the presence of two larger, independent reservoirs, filled by residual portions of the CI and NYT magmas. These generated many smaller, shallower pockets of evolved magma, that fed most of the eruptions that occurred in the CFc over the past 12 ka. Moreover, a deeper reservoir MI., tapped by the NE–SW regional fault system, provided batches of less-evolved magma that mixed with magma present in the shallower pockets. q1999 Elsevier Science B.V. All rights reserved.
    Description: Published
    Description: 247–268
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; magmatic system ; isotopic disequilibrium ; magma mixing ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.
    Description: Published
    Description: 32245
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Magma transfer ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...