ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Numerische Mathematik 57 (1990), S. 39-50 
    ISSN: 0945-3245
    Keywords: AMS(MOS): 65L05 ; CR: G. 1.7
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Summary This paper contains bounds for the mesh-size ratiosh j+1/h j of nonequidistant grids such that any combination of the widely used backward differentiation formulas with ordersl, 1≦l≦m,m=3,4,5, performs zerostable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-08
    Description: The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number $h^{\prime }_1$ , which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select six well-distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5–2.3 mm.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-14
    Description: Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis–Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S 1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...