ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: harvest index ; old and modern wheats ; root:shoot ratio ; Rht genes ; root dry matter ; root length ; water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines forRht dwarfing genes. Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased. The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns. At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties. The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: harvest index ; old and modern wheats ; root:shoot ratio ; Rht genes ; root dry matter ; root length ; water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes. Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased. The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns. At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties. The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: PLT is a high level plotting package. A Programmer can create a default plot suited for the data being displayed. At run times, users can then interact with the plot overriding any or all of these defaults. The user is also provided the capability to fit functions to the displayed data. This ability to display, interact with, and to fit the data make PLT a useful tool in the analysis of data. The Quick and Dandy Plotter (QDP) program will read ASCII text files that contain PLT commands and data. Thus, QDP provides and easy way to use the PLT software QPD files provide a convenient way to exchange data. The QPD/PLT software is written in standard FORTRAN 77 and has been ported to VAX VMS, SUN UNIX, IBM AIX, NeXT NextStep, and MS-DOS systems.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-TM-4301 , M-662 , NAS 1.15:4301
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The user guide for XSPEC, a command driven, interactive, X-ray spectral fitting program is presented. It is designed to be completely detector independent so it can be used for any X-ray spectral instrument. An overview of the program commands and a walk through of an XSPEC session is presented. Individual commands and descriptions of the spectral models are given. For the more experienced user details of some of the programs associated with XSPEC, the command parser, and the addition of models to XSPEC are included. The PLT plotting package used by XSPEC is described together with the maximum likelihood option for users possessing X-ray spectra with small numbers of counts per bin. Details on the various files used by XSPEC and on the general file structure are also given.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-TM-105007 , NAS 1.15:105007 , ESA-TM-09 , (ISSN 1013-7076)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...