ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: Colorado Univ., Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings; 2 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.
    Keywords: Computer Programming and Software
    Type: 38th JANNAF Combustion Subcommittee Meeting; Volume 1; 471-478; CPIA-Publ-712-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-25
    Description: Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: Colorado Univ., Applied Information Systems Research Program (AISRP) Workshop 3 Meeting Proceedings; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The HiiHat toolbox developed for CAT/ENVI provides principal investigators direct, immediate, flexible, and seamless interaction with their instruments and data from any location. Offering segmentation and neutral region division, it facilitates the discovery of key endmembers and regions of interest larger than a single pixel. Crucial to the analysis of hyperspectral data from Mars or Earth is the removal of unwanted atmospheric signatures. For Mars and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), residual atmospheric CO2 absorption is both directly problematic and indicative of processing errors with implications to the scientific utility of any particular image region. Estimating this residual error becomes key both in selecting regions of low distortion, and also to select mitigating methods, such as neutral region division. This innovation, the ATMO estimator, provides a simple, 0-1 normalized scalar that estimates this distortion (see figure). The metric is defined as the coefficient of determination of a quadratic fit in the region of distorting atmospheric absorption (approx 2 micron). This mimics the behavior of existing CRISM team mineralogical indices to estimate the presence of known, interesting mineral signatures. This facilitates the ATMO metric's assimilation into existing planetary geology workflows.
    Keywords: Computer Programming and Software
    Type: NPO-47670 , NASA Tech Briefs, September 2013; 36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering operations were re-coded to operate on horizontal data stripes across the image. Data types were reduced to smaller sizes where possible. Binary- valued intermediate results were squeezed into a more compact, one-bit-per-pixel representation through bit packing and bit manipulation macros. An estimated 16-fold reduction in memory footprint relative to the original Rockster algorithm was achieved. The resulting memory footprint is less than four times the base image size. Also, memory allocation calls were modified to draw from a static pool and consolidated to reduce memory management overhead and fragmentation. Rockster-MER has now been run onboard Opportunity numerous times as part of AEGIS with exceptional performance. Sample results are available on the AEGIS website at http://aegis.jpl.nasa.gov.
    Keywords: Computer Programming and Software
    Type: NPO-47954 , NASA Tech Briefs, September 2013; 35-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...