ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic, Organic and Physical Chemistry  (3)
  • COMPOSITE MATERIALS  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: Response of quasi-isotropic laminates of SiC coated Carbon-Carbon (C/C) composites under flexural fatigue are investigated at room temperature. Virgin as well as mission cycled specimens are tested to study the effects of thermal and pressure cycling on the fatigue performance of C/C. Tests were conducted in three point bending with a stress ratio of 0.2 and frequency of 1 Hz. Fatigue strength of C/C has been found to be considerably high - approximately above 85 percent of the ultimate flexural strength. The fatigue strength appears to be decreasing with the increase in the number of mission cycling of the specimens. This lower strength with the mission cycled specimens is attributed to the loss of interfacial bond strength due to thermal and pressure cycling of the material. C/C is also found to be highly sensitive to the applied stress level during cyclic loading, and this sensitivity is observed to increase with the mission cycling. Weibull characterization on the fatigue data has been performed, and the wide scatter in the Weibull distribution is discussed. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented.
    Keywords: COMPOSITE MATERIALS
    Type: In: International Congress on Experimental Mechanics, 7th, Las Vegas, NV, June 8-11, 1992, Proceedings. Vol. 2 (A94-12901 02-39); p. 1368-1373.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The flexural response of SiC-coated carbon-carbon composites (ACC-4) at room and elevated temperatures is presented. Three-point bending tests were performed on virgin and mission-cycled specimens, and the variation in flexural strength is examined. The load-deflection behavior of the material at various temperatures is investigated, and the Weibull (1939) analysis of the strength data is performed. Micrographs of various cross sections in the damaged zone were taken, and the failure mechanisms are discussed. Fatigue tests were conducted under flexural loads, and the S-N diagram with the corresponding Weibull analysis are presented. Untested as well as fractured specimens under static and dynamic loading were C-scanned to identify the damaged zone and visualize the extent of the damage. Failure analyses are presented for both static and cyclic loading on the basis of NDE, the micrographs, and the experimental data.
    Keywords: COMPOSITE MATERIALS
    Type: Ceramic Engineering and Science Proceedings (ISSN 0196-6219); 13; 8-Jul
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: American Chemical Society Meeting; Mar 01, 2007; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...