ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Glycine max  (4)
  • COMMUNICATIONS AND RADAR  (2)
  • beet mild yellowing virus  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 95 (1989), S. 327-341 
    ISSN: 1573-8469
    Keywords: beet yellows virus ; closterovirus ; beet mild yellowing virus ; luteovirus ; systemic virus transport ; phloem translocation ; phyllotaxis ; leaf arrangement ; leaf appearance ; temperature sum ; symptom development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Samenvatting Suikerbieteplanten die besmet zijn met het bietevergelingsvirus, BYV, of met het zwakke vergelingsvirus, BMYV, ontwikkelen symptomen op de geïnoculeerde bladeren, waarop infectieuze bladluizen virus hebben overgedragen, én op de systemisch besmette bladeren waarheen het virus vanuit de geïnoculeerde bladeren is getransporteerd via het vaatsysteem. Bladeren die op het moment van infectie nog niet verschenen zijn of vlak ervóór zijn verschenen, worden systemisch besmet, terwijl oudere bladeren gezond blijven. De infectiedatum kan worden bepaald door aan de hand van temperatuursommen de verschijningsdatum van het oudste systemisch besmette blad te berekenen. Deze methode bleek bij toetsing in het veld goed te voldoen.
    Notes: Abstract Sugar-beet plants, infected with beet yellows virus (BYV, closterovirus group) or beet mild yellowing virus (BMYV, luteovirus group) develop symptoms on the inoculated leaves on which aphids infected the plant. Symptoms develop also on the systemically-infected leaves to which virus has been transported via the phloem. Systemic infection occurs in the leaves which have just, or not yet appeared at the moment of infection of the plant. All other, older leaves remain uninfected. The infection-date can be estimated by assessing the date of appearance of the oldest systemicallyinfected leaf of a plant. This approach was tested in the field and gave good results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 95 (1989), S. 241-258 
    ISSN: 1573-8469
    Keywords: beet yellows virus ; closterovirus ; beet mild yellowing virus ; luteovirus ; Myzus persicae ; local symptoms ; systemic symptoms ; plant age ; temperature sum ; leaf growth ; estimation of date of infection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Samenvatting De incubatieperiode van het bietevergelingsvirus, BYV, en het zwakke-bietevergelings-virus, BMYV, nam toe naarmate suikerbieteplanten later in het seizoen geïnfecteerd werden. Jonge planten ontwikkelden BYV-symptomen na ongeveer 3 weken terwijl na gewassluiting de incubatieperiode geleidelijk toenam tot 9 weken. De incubatieperiode van BMYV nam toe van 4 à 5 weken na inoculatie in juni tot 9 weken na inoculatie in augustus. Geïnoculeerde bladeren ontwikkelden ongeveer een week eerder symptomen dan de systemisch geïnfecteerde bladeren, behalve bij jonge planten, geïnfecteerd met BYV, waar de symptomen zich op beide typen bladeren tegelijkertijd ontwikkelden. De incubatieperiode nam bij hogere temperatuur af en, afhankelijk van de leeftijd van de plant (aantal bladeren) was een bepaalde temperatuursom nodig voor de ontwikkeling van symptomen. Deze temperatuursom nam toe met de ouderdom van de plant. Van alle systemisch besmette bladeren, vertoonden de oudste, welke juist verschenen op het moment dat de plant werd geïnfecteerd, als eerste symptomen. Dit gebeurde zodra of kort nadat ze hun uiteindelijke grootte hadden bereikt. Groeiende bladeren vertoonden nooit vergelingssymptomen. De trage bladexpansie in oude planten en bij lage temperaturen is een mogelijke oorzaak van de lange incubatieperiode aan het einde van het seizoen. De incubatieperiode werd niet duidelijk beïnvloed door inoculatieomstandigheden, zoals (1) het aantal groene perzikluizen,Myzus persicae, dat werd gebruikt voor inoculatie, (2) het aantal geïnoculeerde bladeren, (3) de ouderdom van het geïnoculeerde blad, (4) de bronplant van BMYV, biet of herderstasje, of (5) de vector species. Omdat de incubatieperiode niet in belangrijke mate afhankelijk is van deze factoren kan bij kennis van de datum waarop symptomen verschenen de infectiedatum worden bepaald op basis van de incubatieperiode.
    Notes: Abstract In three years field trials, the incubation period, i.e. the time between infection and the appearance of symptoms, of beet yellows virus (BYV) and beet mild yellowing virus (BMYV) increased with later infection during the growing season. The incubation period of BYV, a closterovirus, increased from 3 weeks in young plants infected before canopy closure, to 9 weeks in old plants infected in August. The incubation period of BMYV, a luteovirus, increased from 4 to 5 weeks in young plants to 9 weeks in old plants. Symptoms were observed c. one week earlier on the inoculated leaves than on those infected systemically, except on young BYV-infected plants. On these plants, symptoms developed in 3 weeks on both leaf types. The incubation period decreased at increasing temperature, a fixed temperature sum being required for the development of symptoms on plants of a certain age. This temperature sum increased with plant age. Symptom development was related to leaf growth; the systemic symptoms appeared after the infected leaves attained their final size. Young, expanding leaves did not show symptoms. Thus the development of symptoms seems to be related to physiological conditions occurring only in full-grown leaves. A low rate of leaf expansion may constitute the underlying reason for the long incubation period of virus symptoms in old plants and at low temperatures. The incubation period was not substantially affected by: (1) the number ofMyzus persicae used to inoculate the plants, (2) the number of leaves inoculated, (3) the development stage of the inoculated leaf and (4) the source plant of BMYV, beet or shepherd's-purse,Capsella bursapastoris. The incubation period can be used to obtain rough estimates of the infection-date of individual plants, given the date on which symptoms appear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: canopy photosynthesis ; Glycine max ; respiration ; soybean ; transpiration ; mild water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The CO2- and H2O-exchange rates between soybean canopies and the atmosphere were measured in three mobile chambers (4 m3). Each chamber stopped at 8 or 9 plots (3.1-m2 ground area) every 25 min. Diurnal and seasonal CO2-exchange rates (CER) of 13 soybean (Glycine max (L.) Merr.) cultivars are summarized here. The oldest two cultivars, released in 1927 and 1932, had the lowest CER values. The CER usually decreased in the afternoon (23.4 vs 27.8 μmol CO2 m-2 s-1 at 1.6 mmol photons m-2 s-1), except shortly after rainfall. During a drought, these reductions occurred earlier in the day and were more pronounced. We present evidence for a nonstomatal component of the CO2 flux-reaction system causing CER reductions during a water stress. Daytime CER values were not correlated with temperature (24–34° C), but nighttime values were (15–25° C, r=0.85,* n=41).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 3 (1982), S. 81-93 
    ISSN: 1573-5079
    Keywords: field photosynthesis ; Glycine max ; leaf photosynthesis ; Leguminosae ; maturity classification ; soybean ; stage of growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaf photosynthetic rates were measured on field-grown soybeans during the 1980 season. Comparisons were made between different cultivars and isolines representative of maturity groups I–IV. Mature, fully expanded leaves at different nodes on the plant were measured in high light to determine which had the highest potential photosynthetic rates at any one time. Successive leaves during the growing season had maximum rates which increased from about 22 μ mol CO2 m-2 s-1 on 25 June to a peak of 30–44 μ mol CO2 m-2 s-1 in early August. The persistency and eventual decline in the maximum rate was associated with the maturity group and related dates of flowering, pod fill and onset of senescence. Early maturing cultivars (groups I and II) had higher peak rates (38–44 μ mol CO2 m-2 s-1) than later maturing cultivars (30–35 μ mol CO2 m-2 s-1, groups III and IV). However, the photosynthetic rates of early maturing cultivars declined rapidly after attaining their peak, whereas the leaves of later maturing cultivars maintained their photosynthetic activity for much longer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5079
    Keywords: CO2-exchange rates ; Glycine max ; RuBPcase ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Soybean (Glycine max (L.) Merr.) genotypes varying in area per nodal unit (usually a trifoliolate) and maturity class were grown in plots at the University of Illinois experimental farm. Leaf CO2-exchange rates per unit area (CER) were measured under sunlight on intact plants. In addition to previously reported correlations with specific leaf weight and chlorophyll, CER was positively correlated with ribulose bisphosphate carboxylase (RuBPcase) activity, specific activity, and soluble protein, and was negatively correlated with area per leaf unit. The CER: chlorophyll correlation was destroyed by high CER values in 2 chlorophyll-deficient lines. CER values for 27 of the 35 lines tested fell within the range of those for isolines of cultivar Clark varying in leaf characteristics. The CER values were highest for fully expanded leaves during rapid pod fill. These results suggested that photoperiod (maturity) genes and genes for leaf area growth interact with genes controlling photosynthetic CO2-exchange to produce the major differences in CER values among soybean genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 24 (1990), S. 27-34 
    ISSN: 1573-5079
    Keywords: CO2-exchange rate ; Glycine max ; Gossypium hirsutum ; humidity ; hysteresis ; moisture stress ; Sorghum bicolor ; and Zea maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy CO2-exchange rates (CER), air temperatures, and dew points were measured throughout ten days during the 1987 growing season for cotton (Gossypium hirsutum L.), grain sorghum [Sorghum bicolor (L) Moench], and five soybean [Glycine max (L) Merr.] cultivars, and throughout seven days in 1988, on maize (Zea maize L.). The objective was to determine if the decline in CER per unit light during the afternoon is associated with a vapor pressure deficit (VPD) increase. Some of the soybean and maize plots were kept as dry as possible. A VPD term significantly contributed (P≤0.05) to a canopy CER regression model in 54 of 80 data sets in 1987. Grain sorghum was less sensitive than the well-watered soybean genotypes to an increasing VPD (P≤0.05) on three of the ten measurement days and less sensitive than cotton (P≤0.05) on only one day. Cotton demonstrated less VPD sensitivity than soybean (P≤0.05) on one day. The moisture stressed soybean plots showed a greater CER sensitivity to VPD (P≤0.05) than the well-watered soybean plots. In 1988, the frequently irrigated maize plots were less sensitive to VPD (P≤0.05) than the rain-fed plots early in the season, before the rain-fed plots were excessively damaged by moisture stress. These results indicate that the afternoon declines in canopy CER found in a number of different species are associated with increases in the VPD; recent work of others suggests that this may be due to partial stomatal closure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.
    Keywords: COMMUNICATIONS AND RADAR
    Type: NASA-TM-86499 , NAS 1.15:86499
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Approximate solutions are obtained for the uncoupled frequencies and modes of rotating uniform cantilever beams. The frequency approximations for flab bending, lead-lag bending, and torsion are simple expressions having errors of less than a few percent over the entire frequency range. These expressions provide a simple way of determining the relations between mass and stiffness parameters and the resultant frequencies and mode shapes of rotating uniform beams.
    Keywords: COMMUNICATIONS AND RADAR
    Type: NASA-TM-X-62299 , A-5137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...