ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-11
    Description: Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/ heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance considerations,we showhydrothermal pressurization is causing energy transfer from the fluids to the host rocks, ultimately triggering low magnitude earthquakes within a seismogenetic volume containing the hydrothermal system. This mechanism is probably common to other worldwide calderas in similar hydrothermal activity state.
    Description: MIUR project n. PRIN2017-2017LMNLAW“Connect4Carbon”
    Description: Published
    Description: 107245
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Campi Flegrei ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-11
    Description: The Tolhuaca hydrothermal system is one of the few attested geothermal resources in Chile. While recent investigations provided some insights into the depth and temperature of the geothermal reservoirs and the chemical and mineralogical evolution of the hydrothermal system, little is still known about the CO2 degassing of the system and the local and shallow control of fluid pathways. Here, we document the soil CO2 degassing and soil temperature distributions in the southern part of the Tolhuaca hydrothermal system and at one of its northern fumaroles, and provide a first estimate of its total CO2 release. The surveyed area is responsible for a total CO2 emission of up to 30 t d-1. Hydrothermal CO2 emissions (~ 4-27 t d-1) are mostly restricted to the thermal manifestations or generally distributed along NNW trending lineaments, sharing the same orientation as the volcanic vents and thermal springs and fumaroles. Hydrothermal CO2 fluxes, fumaroles and thermal springs are generally encountered in topographic lows, in close vicinity of streams and often in clay-rich pyroclastic units, highlighting a relation between landscape evolution and the activity of the hydrothermal system. We suggest that glacial unloading and incision of the stream inside the clay-rich units have likely enhanced locally the permeability, creating a preferential pathway for the migration of deeper fluid to the surface. As several hydrothermal systems in the Andes are found on the flank of volcanoes hosting glaciers, we propose that they could have had a similar development to that of the Tolhuaca hydrothermal system.
    Description: Published
    Description: 107316
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Tolhuaca volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...