ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep‐Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO〈sub〉2〈/sub〉 concentrations, analog to the upper range of end‐of‐century CO〈sub〉2〈/sub〉 projections. Preindustrial and early Eocene simulations, at a range of CO〈sub〉2〈/sub〉 levels are used to quantify the MHT changes in response to both CO〈sub〉2〈/sub〉 and non‐CO〈sub〉2〈/sub〉 related forcings. We found that atmospheric poleward heat transport increases with CO〈sub〉2〈/sub〉, while oceanic poleward heat transport decreases. The non‐CO〈sub〉2〈/sub〉 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid‐latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO〈sub〉2〈/sub〉 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO〈sub〉2〈/sub〉 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.〈/p〉
    Description: Plain Language Summary: In the Earth's climate system both the atmosphere and the ocean are transporting heat through different processes from the tropics toward the poles. We investigate the transport of the atmosphere in several climate model set ups, which aim to simulate the very warm climate of the early Eocene (∼56–48 Myr ago). This period is relevant, because the atmospheric CO〈sub〉2〈/sub〉 concentration was close to our pessimistic projection of CO〈sub〉2〈/sub〉 concentration for the end of the century. In our study we separate the results into transport changes due to the different set up of the Eocene, and transport changes due to larger CO〈sub〉2〈/sub〉 concentration values. We found that with rising CO〈sub〉2〈/sub〉 values the atmosphere transports more heat from the tropics to the poles. The different location of the continents and seas is influencing the heat transport of the midlatitude cyclones. The Eocene tropical meridional overturning circulation's poleward heat transport does not increase, but it circulates more heat than today. The monsoon systems seem to be affecting a globally smaller area in the Eocene, but they are also more effective in transporting heat. This conclusion is in line with the observation, that current day monsoon systems' precipitation increases, as our CO〈sub〉2〈/sub〉 concentration rises.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉The latent heat transport of the monsoon increases through the Eocene higher CO〈sub〉2〈/sub〉 concentration, but it is reduced by the Eocene topography〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The poleward heat transport of midlatitude cyclones is higher in the Northern Hemisphere in the Eocene, due to the different topography〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The Eocene northern Hadley cell circulates more heat, than in the present, while its net poleward heat transport is even less than today〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Hessisches Ministerium für Wissenschaft und Kunst http://dx.doi.org/10.13039/501100003495
    Description: National Science Fundation
    Description: Swedish Research Council
    Description: NERC SWEET
    Description: Kakenhi
    Description: National Center for Atmospheric Research
    Description: Australian Research Council
    Description: https://www.deepmip.org/data-eocene/
    Description: https://doi.org/10.24381/cds.6860a573
    Description: https://doi.org/10.24381/cds.f17050d7
    Description: https://doi.org/10.5281/zenodo.7958397
    Description: 551.6
    Keywords: meridional heat transport ; early Eocene climatic optimum ; paleoclimate ; monsoon ; CO2 effect ; DeepMIP
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-14
    Description: Abstract Exploiting the added value of the ensemble of high-resolution model simulations provided by the Med- CORDEX coordinated initiative, an updated assessment of Mediterranean extreme precipitation events as represented in different observational, reanalysis and modelling datasets is presented. A spatiotemporal characterisation of the long-term statistics of extreme precipitation is performed, using a number of different diagnostic indices. Employing a novel approach based on the timing of extreme precipitation events a number of physically consistent subregions are defined. The comparison of different diagnostics over the Mediterranean domain and physically homogeneous sub-domains is presented and discussed, focussing on the relative impact of several model configuration features (resolution, coupling, physical parameterisations) on the performance in reproducing extreme precipitation events. It is found that the agreement between the observed and modelled long-term statistics of extreme precipitation is more sensitive to the model physics, in particular convective parameterisation, than to other model configurations such as resolution and coupling.
    Description: Published
    Description: 901-913
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Extreme precipitation · Mediterranean climate · Regional climate modelling ; Mediterranean climate ·
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...