ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words:Amaranthus (mutant) ; C4 photosynthesis ; Mutant (Amaranthus) NAD malic enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. A mutant of Amaranthus edulis (Speg.) lacking activity of the C4 leaf form of NAD-malic enzyme (ME; EC 1.1.1.39) has been isolated. Homozygous mutant (5% wild-type ME activity) and heterozygous (50% wild-type ME activity) F2 plants were shown to contain both the α and β NAD-ME subunits in similar amounts to those detected in the wild-type leaves. The rate of photosynthetic CO2 assimilation was reduced in the homozygous mutant to 5% of that observed for the wild-type leaves. Other C4 enzymes were not down-regulated in the mutant plants. There was little difference in photosynthetic rate of the heterozygous plants compared to the wild-type, suggesting that NAD-ME exerts little control over the rate of C4 photosynthesis, and that in the wild-type the enzyme has a very low control coefficient. The activity loss in the heterozygote may therefore be compensated by regulatory mechanisms that increase the activity of the enzyme in vivo. Data for bundle-sheath strands indicated that although the homozygous mutants were able to oxidise malate via the Krebs cycle, they were unable to convert malate to pyruvate and alanine via NAD-ME.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Glycolysis ; Isozymes ; Oilseeds ; Pentose-phosphate pathway ; Plastids ; Seeds (oil)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isozymes of hexose-phosphate isomerase (HPI; EC 5.3.1.9), pyruvate kinase (PK; EC 2.7.1.40) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) have been detected in the developing cotyledons of soybean (Glycine max (L.) Merr.), safflower (Carthamnus tinctorius L.) and sunflower (Helianthus annuus L.). In each seed there are two isozymes each of PK and HPI. The isozyme patterns of 6PGDH are more complex: soybean has two forms of the enzyme, safflower three, and sunflower six. In each tissue, at least 25% of the activity of each of the three enzymes is in the plastids. This supports the proposal that the glycolytic and pentose-phosphate pathways are operating in the plastids and that the plastids are the site of long-chain fatty-acid biosynthesis in developing oilseeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...