ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • C4  (1)
  • OCEANOGRAPHY  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 7 (1985), S. 77-90 
    ISSN: 1573-5079
    Keywords: carbon dioxide ; C4 ; Paspalum plicatulum ; water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 μmol (CO2) mol-1 (air)) or with 250 μmol mol-1 enrichment. Harvesting was by several cycles of defoliation. With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Hydrographic data from the first phase of the Coordinated Eastern Arctic Experiment (CEAREX) are analyzed. The data consist of temperature and salinity measurements made by a ship-based conductivity-temperature-depth (CTD) instrument and by a drifting SALARGOS buoy. These data were collected in the autumn and early winter of 1988-1989 in the northern Barents Sea, mostly in ice-covered conditions and then across the marginal ice zone (MIZ). The data show that relatively warm, salty water of Atlantic origin is modified by air cooling and ice melting to produce lighter water that has properties identical to (lower) halocline water found in the Arctic Ocean. This occurs mostly at the MIZ and to a lesser degree within the ice pack itself. At the MIZ the halocline water subjects underneath the lighter meltwater that resides directly under the ice pack; geostrophic velocity calculations indicate that it then turns eastward and flows toward the Kara Sea, in keeping with previous chemical tracer analyses. A rough calculation reveals that the amount of halocline water formed in this way in the Barents Sea and Fram Strait is 30-50% of that formed by ice growth in eastern Arctic polynyas.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; C1; p. 881-894
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...