ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 19 (1982), S. 383-394 
    ISSN: 0730-2312
    Keywords: epidermal growth factor ; receptors ; endocytosis ; cell surface ; response kinetics ; compartmentation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have investigated the stimulation of fluid phase endocytosis by epidermal growth factor (EGF) in normal human fibroblasts using 125I-labeled polyvinylpyrrolidone (125I-PVP) as a fluid phase marker. We found that EGF initially induced a thereefold increase in the rate of 125I-PVP uptake. This initial burst of fluid uptake terminated within 10 min. Thereafter, the rate of fluie uptake in EGF-treated cells was approximately 40% higher than in control cells. To identify the cellular site of EGF action in stimulating fluid phase endocytosis, we examined the kinetics of the induction of this response as well as the kinetics of cell surface binding and internalization of 125I-EGF. Although there was no detectable lag between binding of EGF to the cell surface and its internalization, the kinetics of the two processes were quite different. Significantly, the kinetics of induction of 125I-PVP uptake matched the kinetics of binding of 125I-EGF to its cell surface receptors, indicating that the signal for the increase in fluid phase endocytosis is generated at the cell surface. To determine if EGF-stimulated fluid phase endocytosis was related to EGF-stimulated endocytosis of its own receptor, we compared the EGF dose dependency and time course of the two processes. Although the stimulated endocytosis of the EGF receptor was not saturable with respect to the concentration of EGF used, the stimulation of fluid phase endocytosis was half maximal at an EGF concentration of 1 ng/ml and saturated at a concentration of 5 ng/ml. Also, the stimulation of fluid phase endocytosis was sevenfold greater initially after adding EGF than after a 30-min continuous incubation with the hormone, whereas the enhanced clearance of the EGF receptor did not change during this time period. We conclude that the EGF-stimulated increase in fluid phase endocytosis is not directly coupled to EGF-stimulated endocytosis of its own receptor but instead to a separate signal generated at the cell surface.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 36 (1988), S. 199-207 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; heparan sulfate ; heparitinase ; thrombin ; C1s ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previous studies have shown that glycosaminoglycans in the extracellular matrix accelerate the inactivation of target proteases by certain protease inhibitors. It has been suggested that the ability of the matrix of certain cells to accelerate some inhibitors but not others might reflect the site of action of the inhibitors. Previous studies showed that fibroblasts accelerate the inactivation of thrombin by protease nexin-1, an inhibitor that appears to function at the surface of cells in extravascular tissues. The present experiments showed that endothelial cells also accelerate this reaction. The accelerative activity was accounted for by the extracellular matrix and was mostly due to heparan sulfate. Fibroblasts but not endothelial cells accelerated the inactivation of thrombin by heparin cofactor II, an abundant inhibitor in plasma. This is consistent with previous suggestions that heparin cofactor II inactivates thrombin when plasma is exposed to fibroblasts and smooth muscle cells. Neither fibroblasts nor endothelial cells accelerated the inactivation of C1s by plasma C1-inhibitor.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 9 (1978), S. 69-77 
    ISSN: 0091-7419
    Keywords: dexamethasone ; epidermal growth factor ; human diploid fibroblasts ; cell proliferation ; permissive effect ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The addition of the glucocorticoid analog dexamethasone (DX) to serum-free cultures of human fibroblasts caused a twofold enhancement of the mitogenic response to epidermal growth factor (EGF), although DX by itself was not mitogenic. A basis for this effect was suggested by studies showing that DX also increased the cellular binding of 125I-EGF. DX increased the ability of the cells to bind 125I-EGF only at low physiological concentrations of this polypeptide. Thus, data from 125I-EGF binding to cells incubated without DX produced a linear Scatchard plot, whereas the data from 125I-EGF binding to DX-treated cells led to an upwardly curvilinear Scatchard plot. Measurements of 125I-EGF association with the cell surface and cytoplasm indicated that this binding change involved an alteration of cell surface EGF receptors. The binding change appeared not to involve negatively cooperative interactions between EGF receptors, nor a change in the number of receptors. The binding alteration could be explained by a model in which DX converted 25-30% of the cell surface EGF receptors to a form having a fourfold increased affinity.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...