ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-5535
    Keywords: Fermentation development ; Cholecystokinin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The natural product asperlicin is the first nonpeptide antagonist of cholecystokinin isolated from a microbial source. At discovery, production of asperlicin by the original soil isolate ofAspergillus alliaceus was between 15 and 30 mg/l. Selection of natural variants ofA. alliaceus, use of Plackett & Burman and Simplex experimental designs; formulation of synthetic media; amino acid supplementation of production media; analysis of complex nitrogen sources for their amino acid content; evaluation of promising media in fermentors; substitution of glycerol for glucose as a carbon source and rational mutant selection all contributed to titer increases to 〉900 mg/l.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 400 (1999), S. 123-128 
    ISSN: 1573-5117
    Keywords: exotic species ; leaf litter ; C/N ratios ; decomposition ; stream ecology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Russian olive tree (Elaeagnus angustifolia L.) was brought to the western United States from Eurasia during the early to mid-1900s, and has since become a common member of many riparian communities in Idaho. We compared leaf chemistry and in-stream processing of Russian olive leaves (exotic) and various species of native leaves in one hardwater and one relatively softwater Idaho stream. Measurements using air-dried leaves showed that Russian olive contained the greatest concentration of nitrogen, approximately 1.6% of the dry mass, whereas the native species each contained less than 1.0% nitrogen. The C/N ratio of Russian olive was 〈30, whereas the natives each had C/N ratios greater than 40. Results from the hardwater stream indicated no difference in 30-day loss of AFDM between Russian olive and the native leaves (dogwood and aspen). In the relatively softwater stream, the Russian olive leaves were processed significantly slower than the native leaf species (cottonwood). The results indicate that a replacement of native riparian trees by exotics, such as Russian olive, may result in slower rates of leaf processing in Idaho streams but that the effect may vary among streams. When comparing the processing of native and exotic leaf litter, initial nitrogen concentrations and initial C/N ratios of the leaves did not appear to be accurate indicators of relative decay rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 400 (1999), S. 123-128 
    ISSN: 1573-5117
    Keywords: exotic species ; leaf litter ; C/N ratios ; decomposition ; stream ecology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Russian olive tree (Elaeagnus angustifolia L.) was brought to the western United States from Eurasia during the early to mid-1900s, and has since become a common member of many riparian communities in Idaho. We compared leaf chemistry and in-stream processing of Russian olive leaves (exotic) and various species of native leaves in one hardwater and one relatively softwater Idaho stream. Measurements using air-dried leaves showed that Russian olive contained the greatest concentration of nitrogen, approximately 1.6% of the dry mass, whereas the native species each contained less than 1.0% nitrogen. The C/N ratio of Russian olive was 〈30, whereas the natives each had C/N ratios greater than 40. Results from the hardwater stream indicated no difference in 30-day loss of AFDM between Russian olive and the native leaves (dogwood and aspen). In the relatively softwater stream, the Russian olive leaves were processed significantly slower than the native leaf species (cottonwood). The results indicate that a replacement of native riparian trees by exotics, such as Russian olive, may result in slower rates of leaf processing in Idaho streams but that the effect may vary among streams. When comparing the processing of native and exotic leaf litter, initial nitrogen concentrations and initial C/N ratios of the leaves did not appear to be accurate indicators of relative decay rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...