ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C11016, doi:10.1029/2008JC005004.
    Description: Synthetic Aperture Radar images revealed the two-dimensional propagation characteristics of short-period internal solitary waves in Race Point Channel in Massachusetts Bay. The images and in situ measurements of the flow in the channel are used to infer the likely generation mechanism of the waves. The solitary waves are generated during the ebb phase of the tide within the channel. On some occasions, two trains of internal waves are generated presumably at the same location but at slightly different phases of the ebb tide. The main characteristics of the (two-layer) flow are described based on the criticality of the Froude number. It is suggested that these two individual packets of waves result from flow passage through resonance (where the Froude number is one). One packet is generated as the flow passes through the transcritical regime during the acceleration phase of the (ebb) tidal current, and another packet is generated during the deceleration phase. Both packets propagate upstream when the tide slacks, but with slightly different propagation directions.
    Description: J. C. B. da Silva is grateful to FCT for sabbatical leave support (BSAB/610/2006) and the Calouste Gulbenkian Foundation for partial support. J. C. B. da Silva was supported by FCT projects ‘‘SPOTIWAVE-II’’ (project code POCI/MAR/57836/2004) and ‘‘AMAZING’’ (project code PDCTE/CTA/49953/2003). K. R. Helfrich was supported by ONR grant N000140610798. This research was partially supported by the Woods Hole Sea Grant Program (2008– 2010 cycle), under a grant from the U.S. National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce, Grant No. NA06OAR4170021, project number R/O-40.
    Keywords: Internal solitary waves ; Resonant generation ; Flow through straits ; Variable Froude ; Synthetic aperture radar ; Massachusetts Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5704–5709, doi:10.1002/2013GL058064.
    Description: The complex double-ridge system in the Luzon Strait in the South China Sea (SCS) is one of the strongest sources of internal tides in the oceans, associated with which are some of the largest amplitude internal solitary waves on record. An issue of debate, however, has been the specific nature of their generation mechanism. To provide insight, we present the results of a large-scale laboratory experiment performed at the Coriolis platform. The experiment was carefully designed so that the relevant dimensionless parameters, which include the excursion parameter, criticality, Rossby, and Froude numbers, closely matched the ocean scenario. The results advocate that a broad and coherent weakly nonlinear, three-dimensional, M2 internal tide that is shaped by the overall geometry of the double-ridge system is radiated into the South China Sea and subsequently steepens, as opposed to being generated by a particular feature or localized region within the ridge system.
    Description: This work is funded by ONR grants N00014-09- 1-0282 and N00014-09-1-0227, CNRS-PICS grant 5860, ANR grant 08- BLAN-0113-01, and the MIT-France Program.
    Description: 2014-05-04
    Keywords: Internal tide ; Luzon Strait ; Internal solitary waves ; Laboratory experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 464 (2002): 251-278, doi:10.1017/S0022112002008868.
    Description: The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g[prime prime or minute], Coriolis frequency f, and bottom slope [alpha]. The nose propagation speed is cp [similar] cw/ (1 + cw/c[alpha]) and the width of the buoyant gravity current is Wp [similar] cw/ f(1 + cw/c[alpha]), where cw = (2Qg[prime prime or minute] f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and c[alpha] = [alpha]g/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/c[alpha], which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/c[alpha] [rightward arrow] 0) or approaches the slope-controlled limit (cw/c[alpha] [rightward arrow] [infty infinity]). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/c[alpha] = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.
    Description: This research was supported by NSF grant OCE-0095059.
    Keywords: Buoyant gravity currents ; Scaling theory ; Sloping bottom
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1059929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...