ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1041
    Keywords: Budesonide ; liver ; man ; sulphotransferase ; testosterone ; drug metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract Budesonide, a corticosteroid used in the treatment of asthma and allergic reactions, is almost entirely cleared by metabolism in man. We describe the sulphation of budesonide in human liver and lung and provide evidences that the sulphation of budesonide is catalysed by testosterone sulphotransferase. A rapid and reproducible radiometric assay for budesonide sulphotransferase is described. Liver specimens were obtained from 35 men and 65 women and lung specimens from 2 women and 17 men. The average hepatic budesonide sulphation rate was significantly higher in men (41.1 pmol·min−1·ml−1) than women (28.2 pmol·min−1·mg−1). In the lung, the mean budesonide sulphation rate was 5.0 pmol·min−1·mg−1. Testosterone strongly inhibited the hepatic sulphation of budesonide, whereas p-nitrophenol and dopamine were poor inhibitors; the IC50 was 7.0 uM (testosterone), 320 uM (p-nitrophenol) and 510 uM (dopamine). The hepatic rates of testosterone, p-nitrophenol and dopamine sulphation were measured in the same samples assayed for budesonide sulphotransferase. There was a correlation between the hepatic rates of budesonide and testosterone sulphation (P〈0.001; r=0.810). The activity of testosterone sulphotransferase was significantly greater in men than women (22.0 vs. 17.2 pmol·min−1·mg−1), wheres those of dopamine and p-nitrophenol sulphotransferase were not sex dependent. The hepatic activity of budesonide sulphotransferase parallels that of testosterone suggesting that sulphation is an important reaction in the metabolism of budesonide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: We present a new surface-wave tomograpic study of the broad European and Mediterranean region. Our goal is to enhance the resolution of previously published group velocity models using new data from European permanent seismic networks and a dense broad-band array in Northern Apennines (RETREAT). We measure fundamental mode Rayleigh and Love wave group velocities from long period seismograms recorded at regional distance (between 600 and 7000 km). Our measurement technique is based on iterative application of multiple filters and phase-matched filters; we accurately estimate dispersion curves for more than 1500 Rayleigh wave and about 850 Love wave paths in the period range 35 s - 170 s. Consistency of measurements is evaluated by comparing ray clusters from sample earthquakes to closely spaced RETREAT stations. In the whole data set, measurement errors in group velocity decrease with increasing distance, and show to be caused by inaccuracy in the estimate of group arrival time. We calculate maps of Love and Rayleigh group velocity at selected periods by linear tomographic inversion, accounting for group arrival time errors and evaluating a posteriori group slowness errors. Data coverage in this region is not uniform, and it is highly influenced by the uneven distribution of earthquakes and seismic stations. We therefore build a laterally heterogeneous reference model by inverting a global data set of group velocity derived from the phase velocity library of Ekstrom et al., 1997. Use of this reference as an a priori model during inversion improves preliminary data coverage at the borders of our study region, and warrants consistency with global models. The implications of different regularization constraints (mathematically equivalent to norm damping or smoothing with different criteria) are analyzed and compared. Group velocity maps confirm the large scale geological lineaments known for the region: short periods maps differentiate well among thinner oceanic and thicker continental crust; the most dominant feature in long period maps is the difference between the fast Precambrian East European Platform and the low velocity signature of central Europe and western Mediterranean, separated by a sharp gradient in correspondence of the Tornquist-Tesseyre Zone. The seismically active Tethyan Belt is clearly marked by a continuous slow anomaly. Smaller scale, possibly thermally related, low velocity anomalies are found under Iceland and Mid-Atlantic Ridge, Rhine Graben and Tyrrhenian Back-Arc basin, while the Hellenic Arc is characterized by fast velocity.
    Description: SPICE EC FP6 Marie Curie RTN NERIES INFRAST-2.1-026130
    Description: Submitted
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic tomography ; Surface waves and free oscillations ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present a new surface-wave tomographic study of the broad European and Mediterranean region. Our goal is to enhance the resolution of previously published group velocity models using new data from European permanent seismic networks and a dense broad-band array in Northern Apennines (RETREAT). We measure fundamental mode Rayleigh and Love wave group velocities from long-period seismograms recorded at regional distance (between 600 and 7000 km). Our measurement technique is based on iterative application of multiple filters and phase-matched filters; we accurately estimate dispersion curves for more than 1500 Rayleigh wave and about 850 Love wave paths in the period range 35–170 s. Consistency of measurements is evaluated by comparing ray clusters from sample earthquakes to closely spaced RETREAT stations. In the whole data set, measurement errors in group velocity decrease with increasing distance and show to be caused by inaccuracy in the estimate of group arrival time. We calculate maps of Love and Rayleigh group velocity at selected periods by linear tomographic inversion, accounting for group arrival time errors and evaluating a posteriori group slowness errors. Data coverage in this region is not uniform, and it is highly influenced by the uneven distribution of earthquakes and seismic stations. We therefore build a laterally heterogeneous reference model by inverting a global data set of group velocity derived from the phase velocity library of Ekström et al. (1997). Use of this reference as an a priori model during inversion improves preliminary data coverage at the borders of our study region and warrants consistency with global models. The implications of different regularization constraints (mathematically equivalent to norm damping or smoothing with different criteria) are analysed and compared. Group velocity maps confirm the large-scale geological lineaments known for the region: short-periods maps differentiate well among thinner oceanic and thicker continental crust; the most dominant feature in long-period maps is the difference between the fast Precambrian East European Platform and the low velocity signature of central Europe and western Mediterranean, separated by a sharp gradient in correspondence of the Tornquist–Tesseyre Zone. The seismically active Tethyan Belt is clearly marked by a continuous slow anomaly. Smaller scale, possibly thermally related, low velocity anomalies are found under Iceland and Mid-Atlantic Ridge, Rhine Graben and Tyrrhenian back-arc basin, whereas the Hellenic Arc is characterized by fast velocity.
    Description: NERIES INFRAST-2.1-026130 SPICE EC FP6 Marie Curie RTN
    Description: Published
    Description: 1050-1066
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Inverse theory ; Surface waves and free oscillations ; Seismic tomography ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The representation of crustal structure in 3D numerical models often poses particular problems that are difficult to overcome. Practical implementations of an improved crustal model into efficient tools for seismic wave propagation modeling often fail to honor the strongly varying depth of the Moho discontinuity. The widely used Spectral Element Method (SEM) using hexahedral elements follows the compromise to approximate this undulating discontinuity with polynomials inside the elements. This solution is satisfactory when modeling seismic wave propagation on the global scale and limitedly to rather low frequencies, but may induce inaccuracies or artifacts when working at the continental scale, where propagation distances are in the order of a few hundred or thousand kilometers and frequencies of interest are up to 0.1 Hz. An alternative modeling tool for seismic wave propagation simulations is the Discontinuous Galerkin Finite Element Method (ADER-DG) that achieves high-order accuracy in space and time using fully unstructured tetrahedral meshes. With this approach strong and undulating discontinuities can be considered more easily by the mesh and modifications of the geometrical properties can be carried out rapidly due to an external mesh generation process. Therefore, we implement more realistic models for the European crust -- based on a new, comprehensive compilation of currently available information from diverse sources, ranging from seismic prospection to receiver functions studies -- in both, the SEM and ADER-DG codes, to study the effects of the numerical representation of crustal structures on seismic wave propagation modeling. We compare the results of the different methods and implementation strategies with respect to accuracy and performance. Clearly, an improved knowledge and detailed representation of the structure of the Earth's crust is a key requisite for better imaging of the mantle structure.
    Description: Published
    Description: San Francisco, California, USA
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: crust ; wave propagation ; ADER-DG ; SEM method ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the last two decades, south-central Europe and the Eastern Alps have been widely explored by many seismic refrac- tion experiments (e.g., CELEBRATION 2000, ALP 2002, SUDETES 2003). Although quite detailed images are available along linear profiles, a comprehensive, three-dimensional crustal model of the region is still missing. This limitation makes this region a weak spot in continental-wide comprehensive represen- tations of crustal structure. To improve on this situation, we select and collect 37 published active-source seismic lines in this region. After geo-referencing each line, we sample them along vertical profiles—every 50 km or less along the line—and derive P-wave velocities in a stack of homogeneous layers (separated by discon- tinuities: depth of crystalline basement, top of lower crust, and Moho). We finally merge the information using geostatistical methods, and infer S-wave velocity and density using empirical scaling relations. We present here the resulting crustal model for a region encompassing the Eastern Alps, Dinarides, Pannonian basin, Western Carpathians and Bohemian Massif, covering the region within 45º-51ºN and 11º-22ºE with a resolution of 0.2ºx0.2º. We are also able to extend and update the map of Moho depth in a wider region within 35^-51^N and 12^-45^E; gathering Moho values from the collected seismic lines, other published dataset and using the European plate reference EPcrust as a background. All the digitized profiles and the resulting model are available online.
    Description: Published
    Description: 1575-1588
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal model ; crust ; Moho depth ; Europe ; Eastern Alps ; kriging ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: The structure of the Earth’s upper mantle near convergent plate margins, such as along the Nubia–Eurasia collision zone in the Mediter ranean, involves strong seismic wave speed contrasts associated with subducting lithospheric slabs and opening backarc basins. In this environment, seismic wave propagation is strongly influenced by heterogeneity, and requires appropriate modelling practice. Although accurate numerical methods are often used to model seismic traveltimes in the crust, only approximate techniques have been used for the mantle, on the assumption that speed contrasts are weaker. We devise, optimize, and test a method aimed at recovering strongly heterogeneous mantle structures using a finite-difference scheme to calculate first-ar rival traveltimes and trace seismic rays with high accuracy even in the presence of strong gradients. We adapt this forward scheme—successfully used in local-scale tomography—to spherical geometry through source-specific Earth flattening approximations, and we split calculations in meshes with different step size to model optimally the crust (with a 2 km step) and the mantle (6 km step). We then use an iterative non-linear inversion approach, starting from a simple 1-D prior model. We test the ability of this procedure to reconstruct sample structures, devised to be illustrative for the Mediter ranean region, using synthetic data calculated on the real distribution of sources and stations reported by the Bulletins of the International Seismological Centre (ISC). Besides regular checkerboard patterns, we also reconstruct a more representative model. Different strategies are used and compared in linear and non-linear inversion. We find that a linear approach, by which rays are only traced once in the background model, may result in an illusory fit to data. Realistic upper-mantle structures strongly deflect seismic rays, and cor rect paths can only be found after a few iterations. Although linear inversion seems able to identify the main features quite well, we verify how non-linear inversion and 3-D ray tracing significantly improve the results, especially when we attempt to reconstruct a realistic structure. We also apply the finite-difference, non-linear, traveltime tomography to data from the ISC to retrieve upper-mantle structure in the Central Mediter ranean. We verify that the non-linear inversion is able to reveal shar pened velocity contrasts and thinner bodies than linear inversion. Clear differentiation found in the non- linear result, between signatures of northern and southern Dinarides—showing lithosphere subducting only beneath the southern sector—is more coherent with the regional geodynamic framework. Such improvements due to non-linear mantle tomography may contribute to the general picture of slab detachment and small-scale mantle convection in the Mediter ranean region, and therefore, significantly impact on geodynamic implications of resulting models.
    Description: Published
    Description: 1708–1724
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Body waves ; seismic tomography ; computational seismology ; wave propagation ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Blackwell Publishing Ltd
    Publication Date: 2017-04-04
    Description: We present a new crustal model for the European plate, derived from collection and critical integration of information selected from the literature. The model covers the whole European plate from North Africa to the North Pole (20N - 90N) and from the Mid-Atlantic Ridge to the Urals (40W - 70E). The chosen parameterization represents the crust in three layers (sediments, upper crust and lower crust), and describes the 3D geometry of the interfaces and seismologically-relevant parameters — isotropic P- and S-wave velocity, plus density — with a resolution of 0.5 × 0.5 degrees on a geographical latitude-longitude grid. We selected global and local models, derived from geological assumptions, active seismic experiments, surface-wave studies, noise correlation, receiver functions. Model EPcrust presents significant advantages with respect to previous models: it covers the whole European plate; it is a complete and internally-consistent model (with all the parameters provided, also for the sedimentary layer); it is reproducible; it is easy to update in the future by adding new contributions; and it is available in a convenient digital format. EPcrust could be used to account for crustal structure in seismic wave propagation modeling at continental scale or to compute linearized crustal corrections in continental-scale seismic tomography, gravity studies, dynamic topography and other applications that require a reliable crustal structure. Because of its resolution, our model is not suited for local-scale studies, such as the computation of earthquake scenarios, where more detailed knowledge of the structure is required. We plan to update the model as new data will become available, and possibly improve its resolution for selected areas in the future.
    Description: Published
    Description: 352-364
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Europe ; crust ; crustal properties ; Moho ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography.
    Description: DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130
    Description: Published
    Description: B09401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Europe ; GRACE ; density-velocity scaling relationship ; dynamic topography ; surface waves ; upper mantle density ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-21
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: The Western Alps shows a complex crustal organization due to the subduction of the European Plate beneath the Adriatic Plate and exhumation of the mantle wedge. The lithospheric structure of the Western Alps, that may hold significance for understanding orogenic processes and evolution, has been the subject of many geophysical studies, but the Moho profile remains unclear and this has led to controversies about the depth and extent of the European Plate beneath the Adriatic Plate. With the goal of retrieving detailed information on crustal constitution, we use autocorrelation of seismic ambient noise as a tool to map the body wave reflectivity structure at the subduction zone under the southwestern Alps. We use data recorded by the China–Italy–France Alps (CIFALPS) seismic transect, that includes 45 stations located approximately 5–10 km apart along a profile crossing the Alpine continental subduction in the Western Alps. We analyse the data set in four different frequency bands between 0.09 and 2 Hz. We automatically pick the arrival time of the Moho reflection in the second derivative of the envelope of the autocorrelation stack using prior Moho information. The 0.5–1 Hz frequency band mostly gives the best result due to the clear changes in reflectivity along the waveforms of the autocorrelation stacks after the picked arrival times of the Moho reflections. We find spatial coherence between 18 and 23 km depth in the western portion of the profile, indicating relatively homogeneous crustal rocks, and highly reflective structure under the central mountain range, due to the existence of a highly faulted zone. The very thin crust and the underlying mantle wedge known as the Ivrea body show instead high transparency to seismic waves and absence of reflections. The subduction profile of the European Plate shows a steep trend as compared to previous studies. We discuss autocorrelation stacks and Moho depths obtained from the arrival times of the picked reflectivity change in comparison with previous studies to validate the different reflection structures. Stacked ambient noise autocorrelations reliably image varied crustal properties and reflectivity structures in the highly heterogeneous region of the southwestern Alps.
    Description: Published
    Description: 298–316
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Europe ; Body waves ; Seismic Interferometry ; Seismic noise ; Crustal structure ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...