ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Breath-hold divers  (1)
  • Respiratory frequency  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Company of Biologists, 2017. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 220 (2017): 1761-1773, doi:10.1242/jeb.126870.
    Description: In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
    Description: Funding for this project was provided by the Office of Naval Research (ONR YIP Award no. N000141410563).
    Description: 2018-05-17
    Keywords: Compliance ; Marine mammal ; Lung function ; Respiratory flow ; Tidal volume ; Residual volume ; Total lung capacity ; Respiratory frequency ; Alveolar collapse
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2014. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Diseases of Aquatic Organisms 111 (2014): 191-205, doi:10.3354/dao02790.
    Description: Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.
    Description: This work was supported with funds from the Pfizer Foundation, the SUAT-VISAVET Center of Complutense University of Madrid, the Oceanográfic of the ‘Ciudad de las Artes y las Ciencias’ of Valencia, and by the research projects CGL 2009/12663, CGL2012-39681, and SolSub C200801000288.
    Keywords: Gas bubbles ; DCS ; Caretta caretta ; Loggerheads ; Bycatch ; Hyperbaric treatment ; Gas embolism ; Breath-hold divers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...