ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 312 (2017): R412-R425, doi:10.1152/ajpregu.00402.2016.
    Beschreibung: The hypoxia inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus occurs in habitats prone to hypoxia, it responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, 2α, and 3α independently formed complexes with the β subunit (ARNT) to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α, HIF2αb, a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations.
    Beschreibung: This research was supported in part by the National Science Foundation (IBN-0236494 and DEB-1120263) and by National Institute of Environmental Health Sciences (NIEHS) grant P42ES007381 (Superfund Basic Research Program at Boston University). Data interpretation was aided by reference to a preliminary draft of the F. heteroclitus genome sequence, which was supported by funding from the National Science Foundation (collaborative research grants DEB-1120512, DEB-1265282, DEB-1120013, DEB-1120263, DEB-1120333, DEB-1120398).
    Schlagwort(e): Environmental adaptation ; Oxygen ; Gene expression
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Toxicological Sciences 160 (2017): 386-397, doi:10.1093/toxsci/kfx192.
    Beschreibung: Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, non-embryotoxic levels of 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 nM and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
    Schlagwort(e): Zebrafish ; DOHaD ; RNAseq ; Latent effects ; Brain ; Males
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Current Opinion in Toxicology 2 (2017): 58-71, doi:10.1016/j.cotox.2017.02.003
    Beschreibung: The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
    Beschreibung: M.E.H. and S.I.K are grateful for the long-term support of our AHR research from the National Institute of Environmental Health Sciences (NIEHS) through grants R01ES006272 and P42ES007381 (Superfund Research Program at Boston University). We also acknowledge support from a WHOI Independent Study Award funded by the Andrew W. Mellon Foundation Endowed Fund for Innovative Research. R.R.M. acknowledges support from the NIH National Center for Research Resources RI-INBRE (P20RR016457), National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057, a MDIBL New Investigator Award funded by ME-INBRE (P20RR016463), and NIEHS grant P30ES003828.
    Schlagwort(e): Ah receptor ; Aryl hydrocarbon receptor ; bHLH-PAS ; Dioxin ; Evolution ; Development ; Metazoan ; Vertebrate ; Fish ; Genome duplication ; Gene expression
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...