ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bone mineral density  (1)
  • Chromatin and Epigenetics  (1)
  • 1
    ISSN: 1432-0827
    Keywords: Collagen ; Osteocalcin ; Bone mineral density ; Skeletal heterogeneity ; TRAP ; Cell proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract We have previously shown that calcitonin (CT), an inhibitor of bone resorption, increases vertebral, but not femoral bone density in the rat [3]. To address the physiologic responses associated with these effects on bone mineral density (BMD), we assessed mRNA transcripts reflecting activities of osteoblasts (type I collagen, osteocalcin, osteopontin, and alkaline phosphatase), osteoclasts [tartrate-resistant acid phosphatase (TRAP)], and cell proliferation (histone H4) in the spine and femur of these rats. CT increased spine BMD while increasing type I collagen and decreasing TRAP and histone mRNAs. In the femur, where CT had no effect on BMD, it decreased type I collagen and histone H4 mRNA but did not affect TRAP. CT had no effect on the gene expression of osteocalcin, osteopontin, or alkaline phosphatase at either site. The results indicate that selective alterations in gene expression, as reflected by steady state mRNA levels, are consistent with the changes observed by BMD measurement, and can more clearly define the specific contribution from osteoblast and osteoclast activity. This study demonstrates a heterogeneity in response of the axial and appendicular skeleton to CT, reflected by alterations in gene expression that provide a basis for understanding the observed BMD responses to various pharmacologic interventions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-17
    Description: Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and  Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2 . These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter .
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...