ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • Meiosis  (7)
  • Boergesenia forbesii  (4)
  • Life and Medical Sciences  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 203 (1998), S. 168-174 
    ISSN: 1615-6102
    Keywords: Confocal laser scanning microscopy ; Cytoplasmic domains ; Meiosis ; Microtubules ; Organelle band ; Polarity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Establishment of division polarity and meiotic spindle organization in the lady's slipper orchidCypripedium californicum A. Gray was studied by immunocytochemistry, confocal and transmission electron microscopy. Prior to organization of the spindle for meiosis I, the cytoplasmic domains of the future dyad and spindle polarity are marked by: (1) constriction of the prophase nucleus into an hourglass shape; (2) reorganization of nuclear-based radial microtubules into two arrays that intersect at the constriction; and (3) redistribution of organelles into a ring at the boundary of the newly defined dyad domains. It is not certain whether the opposing microtubule arrays contribute directly to the anastral spindle which is organized in the perinuclear areas of the two hemispheres. By late prophase each half-spindle consists of a spline-like structure from which depart the kinetochore fibers. This peculiar spindle closely resembles the spline-like spindle of generative-cell mitosis in certain plants where the spindle is distorted by physical constraints of the slender pollen tube. In the microsporocyte, the elongate spindle of late prophase/metaphase is curved within the cell so that the poles are not actually opposite each other and chromosomes do not form a plate at the equator. By late telophase the poles of the shortened halfspindles lie opposite each other. Plasticity of the physically constrained plant spindle appears to be due to its construction from multiple units terminating in minipoles. Cytokinesis does not follow the first meiosis. However, the dyad domains are clearly defined by radial microtubules emanating from the two daughter nuclei and the domains themselves are separated by a disc-like band of organelles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Cellulose microfibrils ; Cell wall ; Fluorescent brightening agent ; Freeze fracture ; Terminal synthesizing complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Wounding cells ofBoergesenia forbesii (Harvey) Feldmann induces the synchronous formation of numerous protoplasts which synthesize large cellulose microfibrils within 2–3 hours after wounding. The microfibrils appear to be assembled by linear terminal synthesizing complexes (TCs). TC subunits appear on both E- and P-faces of the plasma membrane, thus suggesting the occurrence of a transmembrane complex. The direction of microfibril synthesis is random during primary wall assembly and becomes ordered during secondary wall assembly. The average density of TCs during secondary wall deposition is 1.7/μm2, and the average length of the TC is 510 nm. TC organization is similar to that ofValonia macrophysa; however, the larger TCs ofBoergesenia (510 nm vs. 350 nm) produce correspondingly larger microfibrils (30 nm vs. 20 nm). The effects of a fluorescent brightening agent (FBA), Tinopal LPW, on cell wall regeneration ofBoergesenia protoplasts was investigated. The threshold level of Tinopal LPW for interfering with microfibril assembly is 1.5 μM. At 95 μM Tinopal (for short periods up to 15 minutes), microfibril impressions have atypical spherical impressions at their termini. At longer incubations (24 hours), TCs and microfibril impressions are absent. When washed free of Tinopal, the protoplasts eventually resume normal wall assembly; however, TCs do not reappear until at least 30 minutes after the removal of Tinopal. In consideration of the presence of ordered TCs before FBA treatment, their random distribution upon recovery implies an intermediate stage of assembly or possiblyde novo synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 148 (1989), S. 26-32 
    ISSN: 1615-6102
    Keywords: Cytokinesis ; Cytoplasmic domains ; Meiosis ; Microtubules ; Minispindles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 152 (1989), S. 136-147 
    ISSN: 1615-6102
    Keywords: Isoetes ; Megasporogenesis ; Monoplastidy ; Meiosis ; Microtubules ; Mitotic apparatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The large megasporocytes ofIsoetes provide an exceptional system for studying microtubule dynamics in monoplastidic meiosis where plastid polarity assures coordination of plastid and nuclear division by the intimate association of MTOCs with plastids. Division and migration of the plastid in prophase establishes the tetrahedrally arranged cytoplasmic domains of the future spore tetrad and the four plastid-MTOCs serve as focal points of a unique quadripolar microtubule system (QMS). The QMS is a dynamic structure which functions in plastid deployment and contributes directly to development of both first and second division spindles. The nucleation of microtubules at discrete plastid-MTOCs is compared with centrosomal nucleation of microtubules in animal cells where growth of microtubules involves dynamic instability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1615-6102
    Keywords: Meiosis ; Microtubules ; Polarity ; Ultrastructure ; Mosses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An extensive system of microtubules develops during meiotic prophase in the mossRhynchostegium serrulatum (Hedw.)Jaeg. &Sauerb. Development of the cytoskeleton can be traced to early prophase when the nucleus is acentric and the single plastid divides into four plastids. The cytoskeletal microtubules are associated with equidistant positioning of the four plastids at the distal tetrad poles and with migration of the nucleus to a central position in the sporocyte. The cytoskeleton, which interconnects plastids and encloses the nucleus, contributes to the establishment of moss sporocyte polarity. Just prior to metaphase I evidence of the prophase cytoskeleton is lost as the bipolar metaphase I spindle develops in association with discrete polar organizers located in opposite cleavage furrows between plastids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 137 (1987), S. 84-99 
    ISSN: 1615-6102
    Keywords: Meiosis ; Microtubules ; Mitotic apparatus ; Immunofluorescence ; Spindle ; Bryophytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Immunofluorescence and TEM studies of meiosis in two mosses (Bryophyta) provide evidence that the prophasic tetrahedral system of microtubules contributes directly to the metaphase I spindle. Intense staining of tubulin, conspicuously absent around the nuclear envelope, is first seen associated with plastids. By mid-prophase, microtubules radiate from the plastids to the nuclear envelope and become organized into six bands that interconnect the four plastids, forming a tetrahedral cytoskeleton surrounding the nucleus. During transition of prophase to metaphase, the four poles of the tetrahedral microtubule system converge in pairs toward opposite cleavage furrows. Opposite furrows occupy mutually perpendicular planes and the pair of microtubule focal points straddling one furrow lies at right angles to the pair straddling the opposite furrow. Additional microtubules terminate in numerous small clusters in the concave polar regions arching over the cleavage furrows. By early anaphase, the microtubule focal points lie very close to the division axis. We conclude that microtubules recruited from the prophasic quadripolar system are incorporated into the mature metaphase I spindle and the two principal focal points at each pole are those derived from poles of the prophasic quadripolar system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 143 (1988), S. 38-42 
    ISSN: 1615-6102
    Keywords: Cellulose biosynthesis ; Terminal complexes ; Freeze-frac-ture ; Boergesenia forbesii ; Membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Protoplasts derived from cells ofBoergesenia forbesii regenerated aberrant cell walls when treated with cholesteryl hemisuccinate (CHS). Protoplasts treated with CHS, for a short period during the initial stages of cell wall regeneration, developed a patchwork cell wall, possessing regions devoid of cell wall. This effect was reversible, and treated cells ultimately developed a normal, confluent cell wall when removed from the CHS. Freeze fracture studies revealed that for CHS-treated cells, regions without microfibril impressions did possess intramembranous particles (IMP's) but that these regions contained small domains free of IMP's suggestive of lateral phase separation. The data implies that the physical characteristics of the plasma membrane lipid are important to the deposition of cell wall microfibrils during cell wall regeneration. This effect may be attributed to altered lipid-protein interactions, modified membrane fusion characteristics, or altered membrane flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 144 (1988), S. 160-169 
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Valonia ventricosa ; Freeze fracturing ; Cellulose synthesizing complexes ; Microfibrils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The development of linear cellulose synthesizing complexes (=TCs) of two selected siphonocladalean algae,Boergesenia forbesii andValonia ventricosa was investigated by following the time course of the regeneration of cell walls with the freeze fracture technique after aplanospore induction. The following structural changes of TC development were examined: (1) TCs initiatede novo; (2) the first nucleation of TC subunits occurs within 2 hr inBoergesenia and 5 hr inValonia after aplanospore induction, immediately followed by the assembly of cellulose microfibrils; (3) TCs increase their length during the assembly of randomly oriented microfibrils; and, (4) TCs stop increasing in length after the assembly of ordered microfibrils begins, with some time lag. The data demonstrate that linear TCs are not artificial products but dynamic entities which are involved in the assembly of cellulose microfibrils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 127 (1985), S. 101-109 
    ISSN: 1615-6102
    Keywords: Division polarity ; Microtubules ; Meiosis ; Selaginella ; Sporogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An ultrastructural investigation of the monoplastidic microsporocytes ofSelaginella arenicola revealed a unique cytoskeletal array that predicts the future division plane before nuclear division takes place. By midprophase of the first meiotic division, the single plastid has divided once and the two plastids lie on opposite sides of the nucleus which is elongated in the plane of the incipient metaphase I spindle. A cytoplasmic structure, the procytokinetic plate (PCP), predicts the division plane of of both plastid and cytoplasm. The PCP consists of a distinct concentration of vesicles lying in the future division plane and an elaborate system of microtubules aligned parallel to the long axis of plastids and nucleus. Microtubules of the axially aligned system appear to terminate in clusters of vesicles in the central zone of the PCP. The PCP with axially aligned microtubules is as predictive of the division plane in these meiotic cells as is the girdling preprophase band of microtubules in mitotic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Microfibrils ; Microtubules ; Plasma membrane ; Sectioned material ; Terminal complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Transmembrane linear terminal complexes considered to be involved in the synthesis of cellulose microfibrils have been described in the plasma membrane ofBoergesenia forbesii. Evidence for the existence of these structures has been obtained almost exlusively using the freeze etching technique. In the present study an attempt has been made to complete these studies using conventional fixation, staining, and sectioning procedures. In developing cells ofBoergesenia forbesii, strongly stained structures traversing the plasma membrane and averaging 598.9 nm ± 171.3 nm in length, 28.7 nm ± 4.2 nm in width, and 35.2 nm ± 6.6 nm in depth have been demonstrated. These structures are considered to be linear terminal complexes. At their distal (cell wall) surface, they appear to be closely associated with cellulose microfibrils. At the proximal (cytoplasmic) surface, they are associated with microtubules and polysomes. A model of the possible interrelation of the terminal complexes and microtubules leading to the generation of cell wall microfibrils is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...