ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomedical science 3 (1996), S. 47-53 
    ISSN: 1423-0127
    Keywords: Nicotine ; 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; Mecamylamine ; Biopterin ; Dopamine ; Striatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin known to cause dopamine (DA) neuron degeneration, while the psychoactive compound nicotine is known to excite DA neurons. Tetrahydrobiopterin is the cofactor for tyrosine hydroxylase (TOH) in the regulation of DA biosynthesis. The present study investigated the interactions between nicotine and MPTP on striatal biopterin, DA and TOH activity in BALB/c mice. The results indicated that both acute and chronic nicotine administrations at various concentrations significantly increased biopterin and DA levels in the striatum, while MPTP markedly decreased these measures. Pretreatment with nicotine at a dose having no significant effect alone, partially protected against MPTP's toxicity on biopterin and DA. Increasing the dose of nicotine did not have a further protective action. The toxicity of MPTP on TOH was also prevented by nicotine. Further, the above effects of nicotine were probably mediated through the cholinergic nicotinic receptors since mecamylamine reversed the effects of nicotine. These results suggest that nicotine interacts with the dopaminergic system probably at the level of DA biosynthesis through activating TOH and its coenzyme tetrahydrobiopterin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-18
    Description: The sexual differentiation paradigm contends that the female pattern of the reproductive system is established by default because the male reproductive tracts (Wolffian ducts) in the female degenerate owing to a lack of androgen. Here, we discovered that female mouse embryos lacking Coup-tfII (chicken ovalbumin upstream promoter transcription factor II) in the Wolffian duct mesenchyme became intersex—possessing both female and male reproductive tracts. Retention of Wolffian ducts was not caused by ectopic androgen production or action. Instead, enhanced phosphorylated extracellular signal-regulated kinase signaling in Wolffian duct epithelium was responsible for the retention of male structures in an androgen-independent manner. We thus suggest that elimination of Wolffian ducts in female embryos is actively promoted by COUP-TFII, which suppresses a mesenchyme-epithelium cross-talk responsible for Wolffian duct maintenance.
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...