ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 16 (2013): 1130-1138, doi:10.1007/s10021-013-9672-1.
    Description: We evaluated the potential contribution of allochthonous biomass subsidies to the upper trophic levels of offshore food webs in the northeastern Gulf of Mexico (GOM). We made this evaluation considering nitrogen, an essential and often limiting nutrient in coastal ecosystems, to estimate the potential production of within-ecosystem biomass relative to the known import of biomass from an adjacent seagrass dominated ecosystem. When adjusted for trophic transfer efficiency, we found the biomass subsidy from a single species (pinfish, Lagodon rhomboides) from neashore seagrass habitat to the offshore GOM to be greater than the amount of nitrogen exported by a two major rivers and local submarine ground water discharge. Our calculations show that seagrass-derived biomass accounts for ~25% of the total potential production in the northeastern GOM. This estimate is in agreement with a previous study that found 18.5-25% of the biomass in a predatory reef fish was derived from seagrass biomass inputs. These results indicate that all of the sources we consider account for the majority of the nitrogen available to the food web in the northeastern GOM. Our approach could be adapted to other coupled ecosystems to determine the relative importance of biomass subsidies to coastal ocean food 48 webs.
    Description: Funding for the field surveys was provided by the US Fish and Wildlife Service / State Wildlife federal grant number T-15, Florida Fish and Wildlife Conservation Commission agreement number 08007. Additional funding support was provided by the Florida Institute of Oceanography and the U.S. National Oceanic and Atmospheric Administration (Northern Gulf of Mexico Cooperative Institute 191001-363558-01).
    Description: 2014-05-08
    Keywords: Ecosystem subsidies ; Allocthonous ; Biomass ; Seagrass ; Food web ; Secondary production
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Teske, A., Wegener, G., Chanton, J. P., White, D., MacGregor, B., Hoer, D., de Beer, D., Zhuang, G., Saxton, M. A., Joye, S. B., Lizarralde, D., Soule, S. A., & Ruff, S. E. Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin. Frontiers in Microbiology, 12, (2021): 633649, https://doi.org/10.3389/fmicb.2021.633649.
    Description: Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface.
    Description: Research on Guaymas Basin in the Teske lab is supported by NSF Molecular and cellular Biology grant 1817381 “Collaborative Research: Next generation physiology: a systems-level understanding of microbes driving carbon cycling in marine sediments”. Sampling in Guaymas Basin was supported by collaborative NSF Biological Oceanography grants 1357238 and 1357360 “Collaborative Research: Microbial carbon cycling and its interaction with sulfur and nitrogen transformations in Guaymas Basin hydrothermal sediments” to AT and SJ, respectively. SER was supported by an AITF/Eyes High Postdoctoral Fellowship and start-up funds provided by the Marine Biological Laboratory.
    Keywords: Cold seep ; Hydrothermal sediment ; Porewater profiles ; Bacteria, archaea ; Guaymas Basin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...