ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology  (1)
  • Landslide  (1)
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clague, D. A., Paduan, J. B., Caress, D. W., Moyer, C. L., Glazer, B. T., & Yoerger, D. R. Structure of Lo'ihi Seamount, Hawai'i and lava flow morphology from high-resolution mapping. Frontiers in Earth Science, 7, (2019):58, doi:10.3389/feart.2019.00058.
    Description: The early development and growth of oceanic volcanoes that eventually grow to become ocean islands are poorly known. In Hawai‘i, the submarine Lō‘ihi Seamount provides the opportunity to determine the structure and growth of such a nascent oceanic island. High-resolution bathymetric data were collected using AUV Sentry at the summit and at two hydrothermal vent fields on the deep south rift of Lō‘ihi Seamount. The summit records a nested series of caldera and pit crater collapse events, uplift of one resurgent block, and eruptions that formed at least five low lava shields that shaped the summit. The earliest and largest caldera, formed ∼5900 years ago, bounds almost the entire summit plateau. The resurgent block was uplifted slightly more than 100 m and has a tilted surface with a dip of about 6.5° toward the SE. The resurgent block was then modified by collapse of a pit crater centered in the block that formed West Pit. The shallowest point on Lō‘ihi’s summit is 986 m deep and is located on the northwest edge of the resurgent block. Several collapse events culminated in formation of East Pit, and the final collapse formed Pele’s Pit in 1996. The nine mapped collapse and resurgent structures indicate the presence of a shallow crustal magma chamber, ranging from depths of ∼1 km to perhaps 2.5 km below the summit, and demonstrate that shallow sub-caldera magma reservoirs exist during the late pre-shield stage. On the deep south rift zone are young medium- to high-flux lava flows that likely erupted in 1996 and drained the shallow crustal magma chamber to trigger the collapse that formed Pele’s Pit. These low hummocky and channelized flows had molten cores and now host the FeMO hydrothermal field. The Shinkai Deep hydrothermal site is located among steep-sided hummocky flows that formed during low-flux eruptions. The Shinkai Ridge is most likely a coherent landslide block that originated on the east flank of Lō‘ihi.
    Description: Funding for the collection of the data was provided by the National Science Foundation OCE1155756 to CM and the Schmidt Ocean Institute to BG. Support for DC and JP to process the data and write the manuscript was provided by a grant from the David and Lucile Packard Foundation to MBARI.
    Keywords: Caldera ; Pit crater ; Landslide ; Channelized flows ; Hummocky flows ; Lō‘ihi Seamount
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, Z. A., Moustahfid, H., Mueller, A., V., Michel, A. P. M., Mowlem, M., Glazer, B. T., Mooney, T. A., Michaels, W., McQuillan, J. S., Robidart, J. C., Churchill, J., Sourisseau, M., Daniel, A., Schaap, A., Monk, S., Friedman, K., & Brehmer, P. Advancing observation of ocean biogeochemistry, biology, and ecosystems with cost-effective in situ sensing technologies. Frontiers in Marine Science, 6, (2019): 519, doi:10.3389/fmars.2019.00519.
    Description: Advancing our understanding of ocean biogeochemistry, biology, and ecosystems relies on the ability to make observations both in the ocean and at the critical boundaries between the ocean and other earth systems at relevant spatial and temporal scales. After decades of advancement in ocean observing technologies, one of the key remaining challenges is how to cost-effectively make measurements at the increased resolution necessary for illuminating complex system processes and rapidly evolving changes. In recent years, biogeochemical in situ sensors have been emerging that are threefold or more lower in cost than established technologies; the cost reduction for many biological in situ sensors has also been significant, although the absolute costs are still relatively high. Cost savings in these advancements has been driven by miniaturization, new methods of packaging, and lower-cost mass-produced components such as electronics and materials. Recently, field projects have demonstrated the potential for science-quality data collection via large-scale deployments using cost-effective sensors and deployment strategies. In the coming decade, it is envisioned that ocean biogeochemistry and biology observations will be revolutionized by continued innovation in sensors with increasingly low price points and the scale-up of deployments of these in situ sensor technologies. The goal of this study is therefore to: (1) provide a review of existing sensor technologies that are already achieving cost-effectiveness compared with traditional instrumentation, (2) present case studies of cost-effective in situ deployments that can provide insight into methods for bridging observational gaps, (3) identify key challenge areas where progress in cost reduction is lagging, and (4) present a number of potentially transformative directions for future ocean biogeochemical and biological studies using cost-effective technologies and deployment strategies.
    Description: The unpublished work related to iTag and mini-DO sensor was supported by the US National Science Foundation (NSF) (DBI-145559). The US NSF (OCE-1233654), the US National Institute of Standards and Technology (NIST) (60NANB10D024), and the NOAA Sea Grant (2017-R/RCM-51) supported the development of the CHANOS sensor. Part of this work was supported by the European Commission via the STEMM-CCS, AtlantOS, SenseOCEAN, TriAtlas, and Preface projects under the European Union’s Horizon 2020 research and innovation program (Grant Nos. 603521, 654462, 633211, 614141, and 817578), as well as the AWA project (IRD and BMBF; 01DG12073E), and the Blue Belt Initiative (BBI). The work on the LOC nutrients and carbonate sensors was supported by the Autonuts and CarCASS projects, part of the UK Natural Environment Research Council capital program OCEANIDS (NE/P020798/1 and NE/P02081X/1). The work on zooplankton and chlorophyll sensors was co-supported by the ROEC program (Reseau d’Observation en Environnement Côtier 2015–2020) and the European Regional Development Fund (ERDF).
    Keywords: In situ ; Sensor ; OceanObs ; Ocean technology ; EOVs ; Biogeochemistry ; Biology ; Cost effective
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...