ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 533-552 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: During drying of food materials a multitude of chemical reactions and/or physical changes may occur. In this article attention is focused on one of these, namely, inactivation of enzymes during drying. The prediction of enzyme retention during drying is of interest to the pharmaceutical industry for the production of dry enzyme preparations and to the food processing industry in drying operations of food materials containing enzymes. In this article calculated enzyme retentions are presented for different drying histories and shapes of drying particles. In the numerical calculations it is assumed that enzyme degradation kinetics are first-order reactions, of which reaction constants are known as a function of temperature and water concentration in the drying material. From the calculations, conclusions can be drawn about conditions favorable for high enzyme retentions, or for high enzyme degradations.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 35 (1990), S. 1078-1087 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An oxygen microsensor was used to measure internal oxygen profiles in biocatalyst particles of different diameter and activity. The particles were made of agarose gel and contained an oxygen reducing enzyme, L-lactate mono-oxygenase. The kinetics of the enzyme could be well described by the Michaelis-Menten equation. From the internal substrate concentration profile the intrinsic kinetic parameters were determined by means of fitting a simulated profile to the measurements, using Marquardt's algorithm. The intrinsic kinetic parameters found following this procedure appeared to be independent of particle radius or enzyme loading used, proving the method to be reliable. These parameters were also compared with the kinetic parameters of the free enzyme which were determined in a biological oxygen monitoring system. The intrinsic kinetic parameters showed a decrease with a factor 2.3 for Vm value and with a factor 2.7 for the Km value compared to the parameters for the free enzyme. From this the conclusion can be drawn that the immobilization as such or the carrier material not only can have an effect on the maximum intrinsic conversion rate (Vm) but also on the affinity of the enzyme (Km) for oxygen.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Thiosphaera pantotropha is capable of aerobic heterotrophic nitrification and both aerobic and anaerobic denitrification. These phenomena have been studied in acetate-limited aerobic and anaerobic continuous cultures supplied with ammonia and nitrate. The internal reaction rates were defined, based on biochemical knowledge. The observable external conversion rates are related through a linear equation on the basis of the specified internal reaction rates. The linear equation is a Pirt relation extended for microbial systems with multiple electron donors (acetate and ammonia) and electron acceptors (oxygen and nitrate). The coefficients in this equation were estimated from the continuous culture measurements, and are composed of parameters involved in ATP production and consumption by the microorganism. It is shown that with realistic values for these parameters, the metabolically structured model describes the aerobic as well as the anaerobic experiments.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An oxygen microsensor in combination with mathematical modeling was used to determine the behavior of immobilized Thiosphaera pantotropha. This organism can convert ammonia completely to nitrogen gas under aerobic conditions (coupled nitrification/denitrification) and denitrifies nitrate at highest rates under anaerobic conditions. Immobilization of T. pantotropha can result in aerobic and anaerobic zones inside the biocatalyst particle which will be advantageous for the conversion of ammonia and nitrate from wastewater. However, information of the effects of immobilization on the physiology of T. pantotropha is necessary for the development of such a system. This article gives the extension of a model developed to describe the behavior of chemostat cultures of T. pantotropha so that it can be used for immobilized cells. The original model was based on metabolic reaction equations. Kinetic and diffusion equations have now been added. Experimental verification was carried out using a stirred tank reactor and a Kluyver flask. After immobilization in agarose, the cells were grown in the particles under continuous culture conditions for 3 days. After 24 h the oxygen penetration depth showed a constant value of 100 μ, indicating that a steady state was reached. Scanning electron micrographs showed that large colonies of cells were present in this 100-μm aerobic layer.From the dynamics of the start-up phase, several parameters were determined from measurements of the oxygen concentration profiles made every few hours. The profiles simulated by the model were fitted to the measured data. The average value for the maximum specific growth rate was 0.52 h-1, and the maximum oxygen conversion rate was 1.0 mol Cmol-1 h-1. The maximum specific acetate uptake rate was 2.0 mol Cmol-1 h-1, and the Monod constant for acetate was 2.9 × 10-2 mol m-3. The maximum specific nitrification rate was 0.58 × 10-1 mol Cmol-1 h-1, and the amount of oxygen necessary for nitrification was 11% of the total oxygen uptake rate. Most of the kinetic parameters determined for the immobilized cells were in good agreement with those for the suspended cells. Only the maximum specific growth rate was significantly higher, and the maximum specific nitrification rate was some what lower than for suspended cells. The experimental results clearly show that an oxygen microsensor, in combination with mathematical modeling, can successfully be used to elucidate the kinetic behavior of immobilized, oxygen-consuming, cells.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 109-116 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An approximate method for solving the nonlinear diffusion problem in the case of a power-function variation of the diffusion coefficient with concentration has been applied to a drying process with simultaneous enzyme inactivation. Experimental results obtained by air drying of soybean lipoxygenase entrapped in a glucose calcium-alginate gel are in good agreement with the predicted behavior, whereas hardly any differences occur between the results obtained with the approximate method and those obtained by a numerical solution of the original model.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 11-20 
    ISSN: 0006-3592
    Keywords: conservation equations ; linear constraints ; data reconciliation ; balancing technique ; gross error detection ; error diagnosis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conservation equations derived from elemental balances, heat balances, and metabolic stoichiometry, can be used to constrain the values of conversion rates of relevant components. In the present work, their use will be discussed for detection and localization of significant errors of the following types: 1.At least one of the primary measurements has a significant error (gross measurement error).2.The system definition is incorrect: a component a.is not included in the system description.b.has a composition different from that specified.3.The specified variances are too small, resulting in a too-sensitive test.The error diagnosis technique presented here, is based on the following: given the conservation equations, for each set of measured rates, a vector of residuals of these equations can be constructed, of which the direction is related to the error source, as its length is a measure of the error size. The similarity of the directions of such a residual vector and certain compare vectors, each corresponding to a specific error source, is considered in a statistical test. If two compare vectors that result from different error sources have (almost) the same direction, errors of these types cannot be distinguished from each other. For each possible error in the primary measurements of flows and concentrations, the compare vector can be constructed a priori, thus allowing analysis beforehand, which errors can be observed. Therefore, the detectability of certain errors likely to occur can be insured by selecting a proper measurement set. The possibility of performing this analysis before experiments are carried out is an important advantage, providing a profound understanding of the detectability of errors. The characteristics of the method with respect to diagnosis of simultaneous errors and error size estimation are discussed and compared to those of the serial elimination method and the serial compensation strategy, published elsewhere. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 1217-1220 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: NO ABSTRACT.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 31 (1988), S. 567-578 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In production-scale bioreactors microorganisms are exposed to a continually changing environment. This may cause loss of viability, reduction of the yield of biomass or desired metabolites, and an increase in the formation of by-products. In fed-batch production of baker's yeast, profiles may occur in substrate and oxygen concentrations and in pH. This article deals with the influence of a periodically changing oxygen concentration on the growth of baker's yeast in a continuous culture. Also, influences on the production of ethanol, glycerol, acetic acid, and on the composition of the cells were investigated. It was found that relatively fast fluctuations between oxygen-unlimited and oxygen-limited conditions with a frequency of 1 or 2 min had a distinct influence on the biomass and metabolite production. However, RNA, protein, and carbohydrate contents measured in cells exposed to fluctuations differed little from those in cells from an oxygen-unlimited or an oxygen-limited culture. The respiration and fermentation capacities of cells exposed to fluctuations can be larger than the capacities of cells grown under oxygen-unlimited conditions.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 31 (1988), S. 579-586 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A reactor configuration consisting of two reactors with an exchange flow was used for the experimental simulation of large-scale conditions. The influence of fluctuations in oxygen concentration on the growth and metabolite production of baker's yeast was investigated by sparging one fermentor with air and one with nitrogen gas. It was found that the biomass yield decreased and the metabolite formation increased with rising circulation time (longer oxygen-unlimited and oxygen-limited periods). Not only was the performance of the oxygen-limited fermentor characterised by (partly) reductive metabolism, but that of the oxygen-unlimited fermentor as well. The results of the experiments in this reactor system were compared with those from the experiments carried out in a one-fermentor system with periodically changing oxygen concentrations. The formation of acetic acid, which is characteristic for transient states, showed a distinct difference between the two reactor systems.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1097-1106 
    ISSN: 0006-3592
    Keywords: O2 and CO2 mass transfer ; three-phase slurries ; O2 adsorption on coal ; microbial desulphurization ; Thiobacillus ferrooxidans ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To check for possible mass transfer limitations of oxygen and/or carbon dioxide in kinetic experiments on microbial desulphurization of coal, it is important to properly measure the volumetric mass transfer coefficient (kLa) especially at high slurry densities. Volumetric mass transfer coefficients of oxygen, at different solid hold-up values (εs = 0 to 0.28) of coal slurries (dpar 〈 100 * 10-6 m), were measured in a lab scale fermentor and in a lab scale pachuca tank, using the dynamic gas-liquid absorption method. It was shown that serious errors could occur due to oxygen adsorption at the coal surface. Using the data of an independently measured adsorption isotherm, the real kLa could be calculated from the measured apparent kLa. The results show a kLa decrease of 40% to 50% at a volumetric solid hold-up of 28%. Estimation of the oxygen and carbon dioxide transfer rates, from the measured mass transfer coefficients, indicates that the stirred fermentor is suitable for kinetic experiments at high slurry densities, whereas the pachuca tank and shake flask are not. © 1992 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...