ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 633-639 
    ISSN: 0006-3592
    Keywords: protein adsorption ; sequential ; polymer colloids ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The aim of the present work is to study the sequential adsorption of F(ab′)2 and bovine serum albumin (BSA) molecules adsorbed onto positively and negatively charged polystyrene latexes. Cationic and anionic latexes were prepared by emulsifier-free emulsion polymerization. Adsorptions of F(ab′)2 on both latexes at a low ionic strength and different pHs were performed. The cationic latex showed a higher adsorption of F (ab′)2 molecules over a range of pH, which could be due to the formation of multilayers. Sequential adsorption of anti-CRP F(ab′)2 and monomeric BSA were performed at two different pre-adsorbed F(ab′)2 amounts on both types of latex. Displacement of F(ab′)2 occurred only when the preadsorbed amounts were larger than a certain critical value, which depends on the adsorption pH. A greater displacement of larger preadsorbed amounts might be the result of a weaker contact between the protein molecules and the polystyrene surface. The displacement of F(ab′)2 previously adsorbed onto both latexes occurred due to pH changes, an increase of ionic strength and the presence of BSA molecules. The effect caused by these three factors was studied independently. The main factors in the desorption of F(ab′)2 on the anionic latex are the changes in pH and ionic strength, whereas on the cationic latex the desorption is mainly caused by the increase of the ionic strength and the presence of BSA. The colloidal stability of the immunotatex was improved by BSA adsorption, especially on cationic latex. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 247-255 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Debarking wastewaters of the forest industry contain high concentrations of tannins that are inhibitory to methane bacteria. The tannins can be polymerized to nontoxic colored compounds by the applications of an autoxidation pretreatment, enabling the anaerobic treatment of easily biodegradable components in the wastewater. The continuous anaerobic treatment of untreated and autoxidized pine bark extract was studied in laboratory-scale columns packed with a granular sludge bed. The autoxidation doubled the conversion efficiency of bark extract COD to methane (from 19 to 40%). After 5 months of operation, anaerobic treatment of the autoxidized extracts was feasible at high influent concentrations (14 g COD/L) and loading rates (26 g biodegradable COD/L · d) with 98% elimination of the biodegradable fraction. The detoxification pretreatment polymerized the toxic tannins to poorly biodegradable high molecular weight tannins and humic compounds which were not eliminated during anaerobic treatment. Although the original tannins of the untreated extract were eliminated by 60%, they were not biodegraded to volatile fatty acids and methane but instead were transformed to phenolic degradation intermediates (phenol, p-cresol, 3-phenyl-propionate, and carboxycyclohexane). Therefore, the autoxidation pretreatment did not decrease the content of readily biodegradable substrates which accounted for 53% of the extract COD. The recalcitrant COD expected in the effluents of reactors treating autoxidized debarking waste-water can be effectively separated by calcium precipitation prior to anaerobic treatment.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...