ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 324-332 
    ISSN: 0006-3592
    Keywords: plasma fractionation ; mixing ; protein precipitation ; metal affinity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Previous work by us and others has shown that mixing impacts apparent protein solubility in single protein precipitations. In this work, we probe the effects of contacting conditions on fractional precipitation behavior at the bench scale. We have chosen metal affinity precipitation as our model system; the kinetics of this mode of precipitation are very rapid and largely irreversible and, consequently, mixing conditions govern the extent of fractionation and purity of the product in such a process. Our experimental strategy involved a three-pronged approach to control the effects contacting conditions on precipitate yield, purity, and particle size distribution. First, we studied the impact of process variables that control precipitant concentrations in the reactor including impeller speed and precipitant addition rate. Second, we controlled the rate of precipitation by changing the initial protein concentration to alter the protein-protein collision rate. Third, we examined the role of the molecular-level kinetics of affinity precipitation by using modifiers that compete with surface moieties to bind the metal ion, thereby reducing its availability. Our model process and protein system consisted of zinc precipitations of mixtures of bovine serum albumin and bovine γ-globulins, carried out at a nominal 1-L scale; glycine was examined as a modifier. Faster impeller speeds and lower precipitant addition rates increased the desired protein yields, decreased purities, and reduced average precipitate particle size. Higher initial protein concentrations were found to produce precipitates with higher yields, lower purities and diminished particle size. Experiments with glycine indicated that modifiers in the precipitant solution serve to increase product purity, decrease yield, and increase the average particle size in bench-scale precipitations. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 193-203 
    ISSN: 0006-3592
    Keywords: protein aggregation ; protein formulation ; specific interaction sites ; excipient screening ; affinity chromatography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We describe a new protein characterization technique called self-interaction chromatography (SIC), which exploits the specificity of protein-protein interactions that is common to protein aggregates and enables the rapid screening of protein formulation additives as physical stabilizers against aggregation. This technique also enables the identification of specific interaction sites and the determination of their relative importance for self-association. Mannitol, glycine, and dextran 40 were tested for their stabilizing effect toward the model protein lysozyme. Dextran 40 exhibited a poor stabilizing effect. While mannitol stabilized both the native and acid-denatured forms of lysozyme, glycine stabilized the native form with respect to the denatured species. These results are in good agreement with findings in the formulation literature. The SIC shows tremendous potential as a rapid formulation development tool. We also screened two putative interaction sites for involvement in the self-association of lysozyme and estimated the associated binding energies using a binding isotherm model that we developed. The sites screened consisted of residues 41-48 and 125-128 and were selected based on their apparent importance in forming crystal contacts in several different crystal forms of lysozyme. Of the two sites, only residues 125-128 were found to influence self-association under the conditions we employed. Because the success of this technique depends on the exploitation of self-interactions between native species, several important applications are also suggested such as separating native from misfolded or variant species and probing site utilization in aggregation versus crystallization phenomena. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...