ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: methionine ; methionine sulfoxide ; free radical ; ascorbate ; EDTA ; histidine ; catalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The effect of primary structure and external conditions on the oxidation of methionine to methionine sulfoxide by the ascorbate/Fe3+ system was studied in small model peptides. Degradation kinetics and yield of sulfoxide formation were dependent on the concentration of ascorbate and H+, with a maximum rate observed at pH 6–7. Phosphate buffer significantly accelerated the peptide degradation compared to Tris, HEPES, and MOPS buffers; however, the formation of sulfoxide was low. The oxidation could not be inhibited by the addition of EDTA. Other side products besides sulfoxide were observed, indicating the existence of various other pathways. The influence of methionine location at the C terminus, at the N terminus, and in the middle of the sequence was investigated. The presence of histidine in the sequence markedly increased the degradation rate as well as the sulfoxide production. The histidine catalysis of methionine oxidation occurred intramolecularly with a maximum enhancement of the oxidation rate and sulfoxide production when one residue was placed between the histidine and the methionine residue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 490-500 
    ISSN: 0006-3592
    Keywords: protein ; peptide ; oxidation ; metal catalysis ; photooxidation ; chelator ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Oxidation is one of the major chemical degradation pathways for protein pharmaceuticals. Methionine, cysteine, histidine, tryptophan, and tyrosine are the amino acid residues most susceptible to oxidation due to their high reactivity with various reactive oxygen species. Oxidation during protein processing and storage can be induced by contaminating oxidants, catalyzed by the presence of transition metal ions and induced by light. Oxidative modification depends on the structural features of the proteins as well as the particular oxidation mechanisms inherent in various oxidative species, and may also be influenced by pH, temperature, and buffer composition. Protein oxidation may result in loss of biological activity and other undesirable pharmaceutical consequences. Strategies to stabilize proteins against oxidation can be classified into intrinsic methods (site-directed mutagenesis and chemical modification), physical methods (solid vs. liquid formulations) and use of chemical additives. The optimum choice of chemical additives needs to be evaluated on the basis of the specific oxidation mechanism. Oxidation induced by the presence of oxidants in the system is referred to as a non-site-specific mechanism. Under such conditions, oxidation can be effectively inhibited by the appropriate addition of antioxidants or free radical scavengers. metal-catalyzed oxidation is a site-specific process, in which the addition of antioxidants may accelerate the oxidation reaction. Careful screening of chelating agents has been shown to be an alternative method for preventing metal-catalyzed oxidation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...