ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8935
    Keywords: Polycaprolactone ; Poly(benzyl methacrylate) ; Miscibility ; LCST ; Reversibility ; Binodal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Differential scanning calorimetry and optical microscopy were performed to examine the reversibility of phase separation at above the lower critical solution temperatures in a miscible poly(ε-caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA) blend system. Upon heating, phase separation occurred via a binodal nucleation and growth (NG) mechanism at above 240 °C, which is a lower critical solution temperature (LCST). The pattern of phase domains suggests that the phase separation was meta-stable. Interestingly, the LCST phase separation was found to be readily reversible to original homogeneity upon cooling at regularly accessible rates. A major factor may be that the temperature window between the LCST curve and blend Tg curve is wide, resulting in a convenient temperature range for the polymer chains to kinetically reorganize to a state favored by the thermodynamic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 1664-1673 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A novel approach for toughening thermosetting epoxy matrices using both thermoplastics and liquid reactive rubbers as modifiers has been investigated. The network structure of the modified epoxy systems was characterized using dynamic mechanical analysis, and the morphology of the multiphase structure was examined using scanning electron microscopy (SEM). To investigate the continuity of the phase domains, the constituents in the phase domains were positively identified using solving etching and RuO4 staining techniques for transmission electron microscopy (TEM). The fracture toughness of the modified and basic epoxy samples was measured using compact tension (CT) specimens. Quite limited toughness improvement was achieved for the epoxy modified with only the PSu thermoplastic, or the liquid rubber by itself. However, the fracture toughness was found to increase dramatically when a proper combination of both the liquid reactive rubber and thermoplastic was simultaneously incorporated into the epoxy. Toughening by using dual modifiers resulted in maximum improvement of fracture toughness with minimal compromises in processability and Tg depression by rubbers.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 129-136 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Instrumented impact testing and analysis were performed on an interlaminartoughened carbon fiber epoxy composite (Toray 3900-2/T800H) and a conventional (untoughened) epoxy composite (Fiberite 934/T300). Severity of impact was varied by using a wide range of impact energy. The effect of difference in the tup of the impact instrument was discussed. The residual compressive strengths after compact (CAI's) were measured by using a universal mechanical tester. The impact damage and delamination resistance of the toughened and conventional composites were quantitatively compared. At the same impact energy, the extent of damage was much less severe and the CAI was higher for the toughened composite. Relationships between the CAI's, the state of impact damage, and impact energy were investigated. Impact damage mechanisms for these two composites were not exactly the same. The impact damage of the conventional composite exhibited much greater extents of delamination. By contrast, interlaminar delamination in the toughened composite was found to be significantly suppressed, and the impact damage was more dominated by controlled matrix cracking/fiber damage, instead of catastrophic delamination. As a result, the CAI's of the toughened composite exhibited a monotonous decrease with increase in the impact energy and in the linear dimension of extents of damage.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Dynamic mechanical analysis, stress relaxation, and creep experiments were performed to characterize the viscoelastic properties of a basic unmodified epoxy (Hercules 3501-6) and a modified multiphase epoxy (Hercules 8551-7), which are commonly used as matrices in high performance composites. The Arrhenius and WLF equations and a modified Standard Linear Solid (SLS) Model were used to quantify the viscoelastic behavior below, above, and at the glass transition temperatures, Tg. Both the modified and the unmodified epoxy systems exhibited a single relaxation peak above ambient temperature. The Tg of the modified epoxy at full cure was 170°C, which is 50°C lower than that of the basic epoxy. The glassy moduli of these two resin systems were found to be comparable, but the rubbery modulus of the modified epoxy was much lower than that of the basic epoxy system. However, the viscoelastic behavior of these two systems and their sensitivity to time-temperature may be considered to be quite similar if they are compared with respect to their corresponding glass transition temperatures.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 14 (1993), S. 395-401 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Toughened and untoughened epoxy and BMI carbon fiber reinforced composites were evaluated in terms of their matrix chemical stability in galvanic reactions between metals and composites. It has been known that the presence of moisture and salts and contact between unprotected metals and BMI carbon fiber composition constitute prerequisite conditions for composite degradation. This study has further demonstarated that these conditions were necessary, but not sufficient. It was found that the OH species generated by galvanic reactions had to be concentrated in localized spots to induce composite degradation at a significant rate. A mechanism was proposed to elucidate how degradation took place under those necessary conditions with the aid of localized aggregation of the OH- species. Additionally, thoughening of BMI composite matrix resins resulted in poorer resistance to degradation by galvanic reactions. On the other hand, none of the eposy composites (toughened or untoughened) exhibited any degradation due to galvanic reactions at room temperature, nor did they degrade in a concentrated caustic NaOH solution (pH = 14,82°C) that simulated a highly accelerated galvanie reaction.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...