ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (2)
  • Binding affinity  (1)
  • Enzyme catalysis  (1)
  • 1
    ISSN: 0173-0835
    Keywords: Affinity capillary electrophoresis ; Binding affinity ; Scatchard analysis ; Dissociation constant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Affinity capillary electrophoresis (ACE) is a technique that is used to measure the binding affinity of receptors to neutral and charged ligands. ACE experiments are based on differences in the values of electrophoretic mobility of free and bound receptor. Scatchard analysis of the fraction of bound receptor, at equilibrium, as a function of the concentration of free ligand yields the dissociation constant of the receptor-ligand complex. ACE experiments are most conveniently performed on fused silica capillaries using a negatively charged receptor (molecular mass 〈 50 kDa) and increasing concentrations of a low molecular weight, charged ligand in the running buffer. ACE experiments that involve high molecular weight receptors may require the use of running buffers containing zwitterionic additives to prevent the receptors from adsorbing appreciably to the wall of the capillary. This review emphasizes ACE experiments performed with two model systems: bovine carbonic anhydrase II (BCA II) with arylsulfonamide ligands and vancomycin (Van), a glycopeptide antibiotic, with D-Ala-D-Ala (DADA)-based peptidyl ligands. Dissociation constants determined from ACE experiments performed with charged receptors and ligands can often be rationalized using electrostatic arguments. The combination of differently charged derivatives of proteins - protein charge ladders - and ACE is a physical-organic tool that is used to investigate electrostatic effects. Variations of ACE experiments have been used to estimate the charge of Van and of proteins in solution, and to determine the effect of the association of Van to Ac2KDADA on the value of pKa of its N-terminal amino group.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 24 (1985), S. 617-638 
    ISSN: 0570-0833
    Keywords: Enzyme catalysis ; Synthetic methods ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Enzymes have great potential as catalysts for use in synthetic organic chemistry. Applications of enzymes in synthesis have so far been limited to a relatively small number of largescale hydrolytic processes used in industry, and to a large number of small-scale syntheses of materials used in analytical procedures and in research. Changes in the technology for production of enzymes (in part attributable to improved methods from classical microbiology, and in part to the promise of genetic engineering) and for their stabilization and manipulation now make these catalysts practical for wider use in large-scale synthetic organic chemistry. This paper reviews the status of the rapidly developing field of enzyme-catalyzed organic synthesis, and outlines both present opportunities and probable future developments in this field.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation. Copyright 2002 Wiley-Liss, Inc.
    Keywords: Life Sciences (General)
    Type: Cell motility and the cytoskeleton (ISSN 0886-1544); 52; 2; 97-106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.
    Keywords: Life Sciences (General)
    Type: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology (ISSN 0892-6638); 16; 10; 1195-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...