ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-25
    Description: YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Min -- Fu, Dax -- R01 GM065137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1746-8. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717154" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sequence Alignment ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-24
    Description: The mammalian splicing factor SC35 is required for the first step in the splicing reaction and for spliceosome assembly. The cloning and characterization of a complementary DNA encoding this protein revealed that it is a member of a family of splicing factors that includes mammalian SF2/ASF. This family of proteins is characterized by the presence of a ribonucleoprotein (RNP)-type RNA binding motif and a carboxyl-terminal serine-arginine-rich (SR) domain. A search of the DNA sequence database revealed that the thymus-specific exon (ET) of the c-myb proto-oncogene is encoded on the antisense strand of the SC35 gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, X D -- Maniatis, T -- GM42231/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):535-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1373910" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Baculoviridae/genetics ; Base Sequence ; Binding Sites ; Blotting, Northern ; Cell Line ; Cloning, Molecular ; Codon ; DNA/chemistry/*isolation & purification ; Exons ; Humans ; Molecular Sequence Data ; *Nuclear Proteins ; Proteins/chemistry/*genetics ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-myb ; RNA/metabolism ; *RNA Splicing ; *Ribonucleoproteins ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144069/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144069/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, Sayan -- Chai, Jin -- Cheng, Jie -- D'Mello, Rhijuta -- Chance, Mark R -- Fu, Dax -- P30 DK089502/DK/NIDDK NIH HHS/ -- P30-EB-09998/EB/NIBIB NIH HHS/ -- R01 GM065137/GM/NIGMS NIH HHS/ -- R01-EB-09688/EB/NIBIB NIH HHS/ -- R01GM065137/GM/NIGMS NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):101-4. doi: 10.1038/nature13382. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Synchrotron Biosciences and Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44109, USA [2] Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA. ; Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Center for Synchrotron Biosciences and Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44109, USA. ; 1] Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA [2] Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043033" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biological Transport, Active ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Hydroxyl Radical ; Ion Transport ; Kinetics ; Mass Spectrometry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; *Protons ; Pulse Radiolysis ; Water/metabolism ; X-Rays ; Zinc/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...