ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2009. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Transactions on Signal Processing 58 (2010): 1708-1721, doi:10.1109/TSP.2009.2038424.
    Description: In this paper, we investigate various channel estimators that exploit channel sparsity in the time and/or Doppler domain for a multicarrier underwater acoustic system. We use a path-based channel model, where the channel is described by a limited number of paths, each characterized by a delay, Doppler scale, and attenuation factor, and derive the exact inter-carrierinterference (ICI) pattern. For channels that have limited Doppler spread we show that subspace algorithms from the array processing literature, namely Root-MUSIC and ESPRIT, can be applied for channel estimation. For channels with Doppler spread, we adopt a compressed sensing approach, in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP) algorithms, and utilize overcomplete dictionaries with an increased path delay resolution. Numerical simulation and experimental data of an OFDM block-by-block receiver are used to evaluate the proposed algorithms in comparison to the conventional least-squares (LS) channel estimator.We observe that subspace methods can tolerate small to moderate Doppler effects, and outperform the LS approach when the channel is indeed sparse. On the other hand, compressed sensing algorithms uniformly outperform the LS and subspace methods. Coupled with a channel equalizer mitigating ICI, the compressed sensing algorithms can effectively handle channels with significant Doppler spread.
    Description: C. Berger, S. Zhou, and P. Willett are supported by ONR grants N00014-09-10613, N00014-07-1-0805, and N00014-09-1-0704.
    Keywords: Basis Pursuit ; Doppler spread ; ESPRIT ; ICI ; MUSIC ; OFDM ; Orthogonal Matching Pursuit
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...