ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-12-07
    Beschreibung: This report summarizes the seismicity in Switzerland and surrounding regions in the years 2015 and 2016. In 2015, the Swiss Seismological Service detected and located 735 earthquakes in the region under consideration. With a total of 20 earthquakes of magnitude ML C 2.5, the seismic activity of potentially felt events in 2015 was close to the average of 23 earthquakes over the previous 40 years. Seismic activity was above average in 2016 with 872 located earthquakes of which 31 events had ML C 2.5. The strongest event in the analyzed period was the ML 4.1 Salgesch earthquake, which occurred northeast of Sierre (VS) in October 2016. The event was felt in large parts of Switzerland and had a maximum intensity of V. Derived focal mechanisms and relative hypocenter relocations of aftershocks image a SSE dipping reverse fault, which likely also hosted an ML 3.9 earthquake in 2003. Another remarkable earthquake sequence in the Valais occurred close to Sion with four felt events (ML 2.7–3.2) in 2015/16. We associate this sequence with a system of WNW-ESE striking fault segments north of the Rhoˆne valley. Similarities with a sequence in 2011, which was located about 10 km to the NE, suggest the existence of an en-echelon system of basement faults accommodating dextral slip along the Rhoˆne-Simplon line in this area. Another exceptional earthquake sequence occurred close to Singen (Germany) in November 2016. Relocated hypocenters and focal mechanisms image a SW dipping transtensional fault segment, which is likely associated with a branch of the Hegau-Bodensee Graben. On the western boundary of this graben, micro-earthquakes close to Schlattingen (TG) in 2015/16 are possibly related to a NE dipping branch of the Neuhausen Fault. Other cases of earthquakes felt by the public during 2015/16 include earthquakes in the region of Biel, Vallorcine, Solothurn, and Savognin.
    Beschreibung: SwissEnergy (http:// www.energieschweiz.ch) and the Swiss Federal Office of Energy for the financial support of project GEOBEST-CH; Swiss Competence Center for Energy Research—Supply of Electricity (http://www.sccer-soe.ch); Swiss-AlpArray SINERGIA project CRSII2_154434/1 by the Swiss National Science Foundation (SNSF)
    Beschreibung: Published
    Beschreibung: 221–244
    Beschreibung: 2T. Sorgente Sismica
    Beschreibung: 1IT. Reti di monitoraggio
    Beschreibung: 5IT. Osservatori
    Beschreibung: JCR Journal
    Schlagwort(e): Seismicity ; Magnitude of completeness ; Focal mechanisms ; Seismotectonics ; Rhone-Simplon line ; Hegau-Bodensee graben ; Basel ; Aar massif ; 04. Solid Earth ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-12
    Beschreibung: This report summarizes the seismicity in Switzerland and surrounding regions in the years 2017 and 2018. In 2017 and 2018, the Swiss Seismological Service detected and located 1227 and 955 earthquakes in the region under considera- tion, respectively. The strongest event in the analysed period was the ML 4.6 Urnerboden earthquake, which occurred in the border region of cantons Uri, Glarus and Schwyz on March 6, 2017. The event was the strongest earthquake within Switzerland since the ML 5.0 Vaz earthquake of 1991. Associated ground motions indicating intensity IV were reported in a radius up to about 50 km and locally approached intensity VI in the region close to the epicentre. Derived focal mechanisms and relative hypocentre relocations of the immediate aftershocks image a NNW–SSE striking sinistral strike-slip fault. Together with other past events in this region, the Urnerboden earthquake suggests the existence of a system of sub-parallel strike-slip faults, likely within in the uppermost crystalline basement of the eastern Aar Massif. A vigorous earthquake sequence occurred close to Château-d’Oex in the Préalpes-Romandes region in western Switzer- land. With a magnitude of ML 4.3, the strongest earthquake of the sequence occurred on July 1, 2017. Focal mechanism and relative relocations of fore- and aftershocks image a NNE dipping normal fault in about 4 km depth. Two similarly oriented shallow normal-fault events occurred between subalpine Molasse and Préalpes units close to Châtel-St-Denis and St. Silvester in 2017/18. Together, these events indicate a domain of NE–SW oriented extensional to transtensional deformation along the Alpine Front between Lake Geneva in the west and the Fribourg Fault in the east. The structural complexity of the Fribourg Fault is revealed by an ML 2.9 earthquake near Tafers in 2018. The event images a NW–SE striking fault segment within the crystalline basement, which might be related to the Fribourg Fault Zone. Finally, the ML 2.8 Grenchen earthquake of 2017 provides a rare example of shallow thrust faulting along the Jura fold-and-thrust belt, indicating contraction in the northwestern Alpine foreland of Switzerland.
    Beschreibung: Published
    Beschreibung: id 4
    Beschreibung: 4T. Sismicità dell'Italia
    Beschreibung: JCR Journal
    Schlagwort(e): Seismicity ; Focal mechanisms ; Seismotectonics ; Urnerboden ; Aar Massif ; Château-d’oex ; Préalpes ; Fribourg ; Jura fold-and-thrust belt ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Seismological Society of America
    Publikationsdatum: 2018-03-12
    Beschreibung: The paper has not any abstract
    Beschreibung: Published
    Beschreibung: 720-727
    Beschreibung: 2T. Sorgente Sismica
    Beschreibung: 1IT. Reti di monitoraggio
    Beschreibung: JCR Journal
    Schlagwort(e): Earthquake ; Monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-06-14
    Beschreibung: Abstract
    Beschreibung: We present an outstanding record of local, dense Large-N seismic and distributed acoustic sensor observations of a meteoroid from July 2, 2021 in Iceland. Our dataset includes high-quality observations from seven small aperture arrays of few hundred meters, an infrasound array, and a rotational station, all located within the distance range of 300 km. The high-frequency data show a variety of different phases associated with the source process along the atmospheric trajectory, including impulsive negative 1 first ground motions, a complex coda wave train about 2.5 s long thereafter, an azimuth-dependent stopping phase with reversed polarity between 1-25 s after the first arrival, which is resolved over only a few kilometers. The ground motion amplitude between the first and last arrivals is generally elevated. We associate the waveform in the 2.5 s coda with meteor-atmosphere interactions and nonlinear plasma processes that produce an oscillating shock-wave source pulse. Our data suggest a small azimuth-dependent deflection or dispersion of this source pulse, which may be related to the meteoroid’s deceleration in the atmosphere. We present a finite-length kinematic line-source pulse model that consistently explains the different phases inside and outside the Mach cone segment of our images, their wave amplitude variations, and a polarity change between the first phase and the terminating phase. The previously undiscovered rich directivity effects can also explain seemingly contradictory, time-dependent wave energy beam-directions at the various small aperture arrays and along the DAS cable. A combination of conventional locations and a Bayesian inversion of first and stopping phase arrivals led to a precise localization of the meteor trajectory.
    Schlagwort(e): Large-N seismometers networks ; Distributed fibre optic sensing ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METEORITES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METEORITES 〉 METEORITE ORIGIN
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...