ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-28
    Description: The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, P J -- Tjian, R -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):371-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cloning, Molecular ; DNA-Binding Proteins/*genetics/metabolism ; Gene Expression Regulation ; Molecular Sequence Data ; Protein Processing, Post-Translational ; RNA Polymerase II/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; Transcription Factors/*genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-06-29
    Description: The TATA binding protein, TFIID, plays a central role in the initiation of eukaryotic mRNA synthesis. Here, we present a human cDNA clone for this factor. Comparison of its predicted protein sequence with those from Drosophila and yeast reveals a highly conserved carboxyl-terminal 180 amino acids. By contrast, the amino-terminal region of TFIID has diverged in both sequence and length. A striking feature of the human protein is a stretch of 38 glutamine residues in the NH2-terminal region. Expression of human TFIID in both Escherichia coli and HeLa cells produces a protein that binds specifically to a TATA box and promotes basal transcription; the conserved COOH-terminal portion of the protein is sufficient for both of these activities. Recombinant TFIID forms a stable complex on a TATA box either alone or in combination with either of the general transcription factors, TFIIA or TFIIB. Full-length recombinant TFIID is able to support Sp1 activated transcription in a TFIID-depleted nuclear extract, while a deletion of the NH2-terminal half of the protein is not. These results indicate the importance of the NH2-terminal region for upstream activation functions and suggest that additional factors (co-activators) are required for mediating interactions with specific regulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peterson, M G -- Tanese, N -- Pugh, B F -- Tjian, R -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1625-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2363050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Nucleus/metabolism ; Cloning, Molecular/methods ; DNA/genetics ; DNA, Neoplasm/genetics ; *Gene Expression Regulation ; Glutamine ; HeLa Cells/metabolism ; Humans ; Molecular Sequence Data ; Oligonucleotide Probes ; *Promoter Regions, Genetic ; RNA, Messenger/genetics ; Recombinant Proteins/isolation & purification/metabolism ; Transcription Factor TFIID ; Transcription Factors/*genetics/isolation & purification/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-05-13
    Description: In Drosophila and human cells, the TATA binding protein (TBP) of the transcription factor IID (TFIID) complex is tightly associated with multiple subunits termed TBP-associated factors (TAFs) that are essential for mediating regulation of RNA polymerase II transcription. The Drosophila TAFII150 has now been molecularly cloned and biochemically characterized. The deduced primary amino acid sequence of dTAFII150 reveals a striking similarity to the essential yeast gene, TSM-1. Furthermore, like dTAFII150, the TSM-1 protein is found associated with the TBP in vivo, thus identifying the first yeast homolog of a TAF associated with TFIID. Both the product of TSM-1 and dTAFII150 bind directly to TBP and dTAFII250, demonstrating a functional similarity between human and yeast TAFs. Surprisingly, DNA binding studies indicate that purified recombinant dTAFII150 binds specifically to DNA sequences overlapping the start site of transcription. The data demonstrate that at least one of the TAFs is a sequence-specific DNA binding protein and that dTAFII150 together with TBP are responsible for TFIID interactions with an extended region of the core promoter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verrijzer, C P -- Yokomori, K -- Chen, J L -- Tjian, R -- New York, N.Y. -- Science. 1994 May 13;264(5161):933-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720-3202.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila ; *Drosophila Proteins ; Genes, Fungal ; Genes, Insect ; Histone Acetyltransferases ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; *Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-12-23
    Description: RNA polymerase I and II transcription factors SL1 and TFIID, respectively, are composed of the TATA-binding protein (TBP) and a set of TBP-associated factors (TAFs) responsible for promoter recognition. How the universal transcription factor TBP becomes committed to a TFIID or SL1 complex has not been known. Complementary DNAs encoding each of the three TAFIs that are integral components of SL1 have not been isolated. Analysis of subunit interactions indicated that the three TAFIs can bind individually and specifically to TBP. In addition, these TAFIs interact with each other to form a stable TBP-TAF complex. When TBP was bound first by either TAFI110, 63, or 48, subunits of TFIID such as TAFII250 and 150 did not bind TBP. Conversely, if TBP first formed a complex with TAFII250 or 150, the subunits of SL1 did not bind TBP. These results suggest that a mutually exclusive binding specificity for TBP intrinsic to SL1 and TFIID subunits directs the formation of promoter- and RNA polymerase-selective TBP-TAF complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Comai, L -- Zomerdijk, J C -- Beckmann, H -- Zhou, S -- Admon, A -- Tjian, R -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1966-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; HeLa Cells ; Humans ; Molecular Sequence Data ; *Pol1 Transcription Initiation Complex Proteins ; Promoter Regions, Genetic ; Protein Binding ; RNA Polymerase I/metabolism ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-09-02
    Description: The human ribosomal RNA promoter contains two distinct control elements (UCE and core) both of which are recognized by the sequence-specific DNA binding protein UBF1, which has now been purified to apparent homogeneity. The purified factor activates RNA polymerase I (RNA pol I) transcription through direct interactions with either control element. A second RNA pol I transcription factor, designated SL1, participates in the promoter recognition process and is required to reconstitute transcription in vitro. Although SL1 alone has no sequence-specific DNA binding activity, deoxyribonuclease I footprinting experiments reveal that a cooperative interaction between UBF1 and SL1 leads to the formation of a new protein-DNA complex at the UCE and core elements. In vitro transcription experiments indicate that formation of the UBF1-SL1 complex is vital for transcriptional activation by UBF1. Thus, protein-protein interactions between UBF1 and SL1 are required for targeting of SL1 to cis-control sequences of the promoter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, S P -- Learned, R M -- Jantzen, H M -- Tjian, R -- GM 32856/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1192-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3413483" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromatography, Affinity ; DNA/metabolism ; DNA, Ribosomal/genetics ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; HeLa Cells ; Humans ; Promoter Regions, Genetic ; RNA Polymerase I/metabolism ; RNA, Ribosomal/*biosynthesis ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1985-11-01
    Description: The 21-base pair repeat elements of the SV40 promoter contain six tandem copies of the GGGCGG hexanucleotide (GC-box), each of which can bind, with varying affinity, to the cellular transcription factor, Sp1. In vitro SV40 early RNA synthesis is mediated by interaction of Sp1 with GC-boxes I, II, and III, whereas transcription in the late direction is mediated by binding to GC-boxes III, V, and VI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gidoni, D -- Kadonaga, J T -- Barrera-Saldana, H -- Takahashi, K -- Chambon, P -- Tjian, R -- New York, N.Y. -- Science. 1985 Nov 1;230(4725):511-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2996137" target="_blank"〉PubMed〈/a〉
    Keywords: Autoradiography ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; Mutation ; Pregnancy Proteins/*metabolism ; RNA, Messenger/analysis ; RNA, Viral/biosynthesis ; Simian virus 40/*genetics ; Sp1 Transcription Factor ; Templates, Genetic ; Transcription Factors/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1986-06-13
    Description: Members of the ras gene family encode proteins that when overproduced or mutated can transform immortalized mammalian cells. It is therefore important to understand the mechanisms by which the ras genes are regulated. The promoter region of the human Harvey ras proto-oncogene c-Ha-ras1 initiates RNA transcription at multiple sites and contains repeated copies of the hexanucleotide GGGCGG and its inverted complement CCGCCC, referred to as GC boxes. These GC boxes consist of sequences identical to those found in the SV40 early promoter, where the human cellular transcriptional factor Sp1 binds. Footprinting analysis with deoxyribonuclease I was used to show that Sp1 binds to six GC box sequences within the c-Ha-ras1 promoter. An in vivo transfection assay showed competition between the 21-base pair repeats of the SV40 promoter and the c-Ha-ras1 promoter for common regulatory factors. In this system the presence of Sp1 is apparently required for c-Ha-ras1 transcription. Analysis of deletions of the c-Ha-ras1 promoter region by means of a transient expression assay revealed that the three Sp1 binding sites closest to the RNA start sites were sufficient for full transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishii, S -- Kadonaga, J T -- Tjian, R -- Brady, J N -- Merlino, G T -- Pastan, I -- New York, N.Y. -- Science. 1986 Jun 13;232(4756):1410-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3012774" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; *Promoter Regions, Genetic ; *Proto-Oncogenes ; Simian virus 40/genetics ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-12-04
    Description: Nuclear oncogene products have the potential to induce alterations in gene regulation leading to the genesis of cancer. The biochemical mechanisms by which nuclear oncoproteins act remain unknown. Recently, an oncogene, v-jun, was found to share homology with the DNA binding domain of a yeast transcription factor, GCN4. Furthermore, GCN4 and the phorbol ester-inducible enhancer binding protein, AP-1, recognize very similar DNA sequences. The human proto-oncogene c-jun has now been isolated, and the deduced amino acid sequence indicates more than 80 percent identity with v-jun. Expression of cloned c-jun in bacteria produced a protein with sequence-specific DNA binding properties identical to AP-1. Antibodies raised against two distinct peptides derived from v-jun reacted specifically with human AP-1. In addition, partial amino acid sequence of purified AP-1 revealed tryptic peptides in common with the c-jun protein. The structural and functional similarities between the c-jun product and the enhancer binding protein suggest that AP-1 may be encoded by c-jun. These findings demonstrate that the proto-oncogene product of c-jun interacts directly with specific target DNA sequences to regulate gene expression, and therefore it may now be possible to identify genes under the control of c-jun that affect cell growth and neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohmann, D -- Bos, T J -- Admon, A -- Nishimura, T -- Vogt, P K -- Tjian, R -- CA25417/CA/NCI NIH HHS/ -- CA42564/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1987 Dec 4;238(4832):1386-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley, CA 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2825349" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies/immunology ; Avian Sarcoma Viruses/genetics ; Base Sequence ; Cross Reactions ; DNA/genetics ; DNA-Binding Proteins/genetics/immunology/*physiology ; Enhancer Elements, Genetic ; Fungal Proteins/genetics ; Gene Expression Regulation ; Genes, Viral ; Humans ; Molecular Sequence Data ; Oncogene Protein p65(gag-jun) ; Oncogenes ; *Protein Kinases ; Proto-Oncogene Proteins/genetics/immunology/*physiology ; Proto-Oncogene Proteins c-jun ; *Proto-Oncogenes ; Recombinant Proteins/genetics ; Retroviridae Proteins/genetics ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; Transcription Factors/genetics/immunology/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1986-10-03
    Description: The biochemical analysis of cellular trans-activators involved in promoter recognition provides an important step toward understanding the mechanisms of gene expression in animal cells. The promoter selective transcription factor, Sp1, has been purified from human cells to more than 95 percent homogeneity by sequence-specific DNA affinity chromatography. Isolation and renaturation of proteins purified from sodium dodecyl sulfate polyacrylamide gels allowed the identification of two polypeptides (105 and 95 kilodaltons) as those responsible for recognizing and interacting specifically with the GC-box promoter elements characteristic of Sp1 binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Briggs, M R -- Kadonaga, J T -- Bell, S P -- Tjian, R -- T32 ES07075/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1986 Oct 3;234(4772):47-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3529394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatography, Affinity ; Chromatography, High Pressure Liquid ; Cricetinae ; Cricetulus ; DNA/metabolism ; DNA-Binding Proteins/*isolation & purification/metabolism ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; HeLa Cells/metabolism ; Humans ; Sp1 Transcription Factor ; Transcription Factors/*isolation & purification/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...