ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1040-452X
    Keywords: Sminthopsis macroura ; Microfilaments ; Microtubules ; Taxol ; Marsupial ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Ovulation occurs in Sminthopsis macroura approximately 160 hr after administration of 1.3 IU PMSG, and yields significantly more oocytes than does spontaneous ovulation (P = 0.001).Germinal vesicle (GV)-stage oocytes have a thin cortical rim of microfilaments, which is disrupted by exposure to cytochalasin D. After GV breakdown, the first meiotic spindle forms subcortically and parallel to the oolemma. It rotates during anaphase and telophase to extrude the first polar body. This rotation is associated with a local cortical concentration of microfilaments, which is extruded in the first polar body. The second meiotic spindle is orthogonal to the surface, and extrusion of the second polar body is not associated with obvious local changes in cortical actin, resulting in a polar body containing little polymerized actin. The sites of second polar body emission and sperm entry are always in the half of the oocyte opposite the concentrating yolk mass, and are within 60° of each other in most oocytes. During the concentration and eccentric movement of the yolk, microfilaments condense around it. During yolk expulsion, these microfilaments become continuous with those located subcortically. During early cleavage, the cytocortex of the zygote, but not of the extruded yolk mass, stains heavily for polymerised actin.Multiple sites of pericentriolar material are detectable in the cytoplasm of some secondary unfertilized oocytes which, in the presence of taxol, generate large cytasters and pseudospindle structures. After fertilization, a large aster is formed in association with the sperm entry point and serves as the center of an extensive cytoplasmic network of microtubules which surrounds but does not enter the yolk mass. Taxol treatment generates small cytasters within this meshwork and promotes selective stabilization of some periyolk microtubules opposite to the sperm aster. © 1995 Wiley-Liss, Inc.
    Additional Material: 35 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 106 (1981), S. 375-384 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: S49.1 Lymphoma cells were arrested in G1 phase of the cell cycle when treated with either 1 μM dexamethasone (Dex) or 0.5 mM N6, O2-dibutyryl cyclic adenosine 3′ :5′ -monophosphate (Bt2cAMP) plus 0.2 mM theophylline. However, the two agents had markedly different effects on aspects of polyamine and cyclic nucleotide metabolism within the arrested cells. Bt2cAMP had an early and pronounced inhibitory effect on ornithine decarboxylase (ODC) activity causing a decrease to 40% of control within 1 h. However, there was no significant inhibition of ODC activity in the Dex-treated cells until 4 h of exposure, at which time ODC activity was reduced to approximately 60% of the control value. Sadenosyl-L-methionine decarboxylase (SAMD) activity was reduced by both agents, Bt2cAMP having the more pronounced inhibitory effect. The activity of SAMD was reduced to 40% of control after 10 h of Dex, whereas Bt2cAMP reduced the activity to approximately 25% of control within 4 h. Intracellular polyamine pools were decreased rapidly in Dex-treated cells but not in those exposed to Bt2cAMP. Bt2cAMP decreased the amount of type I (PKI) and type II (PKII) cyclic AMP-dependent protein kinase (cAMP-PK) activity to 30% of control or less within 2 h. In contrast, Dex had very little effect on either PKI or PKII until 24 h, when cell viability was affected. The specific activity of both PKI and PKII remained significantly decreased in cells exposed to Bt2cAMP for 6 h and then resuspended in fresh medium. The rapid decrease in ODC activity in response to Bt2cAMP and the slow recovery after washout may be due to the marked decreases in total PKI and PKII activities. Dex, which had no effect on PKI and PKII specific activities, only slowly inhibited ODC activity and recovery of enzyme activity was rapid upon resuspension in fresh medium. These data further stress the importance of the maintenance of the cellular protein kinase pools in the regulation of the recovery time to growth inhibition in response to naturally occurring steroids and second messengers.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Biologie in unserer Zeit 16 (1986), S. 8-11 
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 5 (1986), S. 1-4 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 12 (1990), S. 199-204 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Enhancer detectors are DNA constructs which, when introduced into a eukaryotic genome, respond to nearby genomic transcriptional regulatory elements by means of a reporter gene, revealing the expression pattern of genes in their vicinity. Recent experiments in Drosophila suggest that enhancer detection is a powerful method to identify genes that are expressed in the nervous system. Since enhancer detectors allow a rapid molecular and genetic characterization of genes in their vicinity, the method will greatly facilitate the study of neural development and behavior.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-03-24
    Description: The Drosophila gene eyeless (ey) encodes a transcription factor with both a paired domain and a homeodomain. It is homologous to the mouse Small eye (Pax-6) gene and to the Aniridia gene in humans. These genes share extensive sequence identity, the position of three intron splice sites is conserved, and these genes are expressed similarly in the developing nervous system and in the eye during morphogenesis. Loss-of-function mutations in both the insect and in the mammalian genes have been shown to lead to a reduction or absence of eye structures, which suggests that ey functions in eye morphogenesis. By targeted expression of the ey complementary DNA in various imaginal disc primordia of Drosophila, ectopic eye structures were induced on the wings, the legs, and on the antennae. The ectopic eyes appeared morphologically normal and consisted of groups of fully differentiated ommatidia with a complete set of photoreceptor cells. These results support the proposition that ey is the master control gene for eye morphogenesis. Because homologous genes are present in vertebrates, ascidians, insects, cephalopods, and nemerteans, ey may function as a master control gene throughout the metazoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halder, G -- Callaerts, P -- Gehring, W J -- New York, N.Y. -- Science. 1995 Mar 24;267(5205):1788-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biozentrum, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7892602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/*embryology/*genetics ; Eye/embryology ; Gene Expression Regulation/physiology ; Genes, Homeobox/physiology ; Genes, Insect/*physiology ; Genes, Reporter ; Microscopy, Electron, Scanning ; Mutation ; Photoreceptor Cells, Invertebrate/embryology ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-08-05
    Description: A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quiring, R -- Walldorf, U -- Kloter, U -- Gehring, W J -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):785-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7914031" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aniridia/*genetics ; Base Sequence ; DNA Transposable Elements/physiology ; DNA-Binding Proteins/*genetics ; Drosophila/embryology/*genetics ; *Drosophila Proteins ; Eye/chemistry ; Eye Proteins ; Genes, Homeobox ; *Homeodomain Proteins ; Humans ; Larva/genetics ; Mice ; Mice, Mutant Strains/*genetics ; Molecular Sequence Data ; Paired Box Transcription Factors ; RNA, Messenger/analysis ; Regulatory Sequences, Nucleic Acid/physiology ; Repressor Proteins ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-06-05
    Description: The body plan of Drosophila is determined to a large extent by homeotic genes, which specify the identity and spatial arrangement of the body segments. Homeotic genes share a characteristic DNA segment, the homeo box, which encodes a defined domain of the homeotic proteins. The homeo domain seems to mediate the binding to specific DNA sequences, whereby the homeotic proteins exert a gene regulatory function. By isolating the normal Antennapedia gene, fusing its protein-coding sequences to an inducible promoter, and reintroducing this fusion gene into the germline of flies, it has been possible to transform head structures into thoracic structures and to alter the body plan in a predicted way. Sequence homologies suggest that similar genetic mechanisms may control development in higher organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gehring, W J -- New York, N.Y. -- Science. 1987 Jun 5;236(4806):1245-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2884726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blastoderm/ultrastructure ; Drosophila/embryology/*genetics ; Embryonic and Fetal Development ; *Genes, Homeobox ; Mutation ; Ovum/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...