ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Barley cropping  (1)
  • residue  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 13-18 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; N mineralization potential ; Microbial biomass C ; Gleysol ; Reduced tillage ; Moldboard plowing ; Barley cropping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In Eastern Canada, cereal yields are often restricted by soil acidity and low fertility. Continuous cereal production can also lead to soil structural degradation. The addition of lime and fertilizers and the adoption of conversation tillage practices are proposed solutions which may have a positive impact on soil quality. The objective of the present work was to assess the impact of 3 years of different tillage practices and P additions, and of a single lime addition on organic C and total N, microbial biomass C, and on N mineralization at the surface layer (0–7.5 cm) of a Courval sandy clay loam (Humic Gleysol). The easily mineralizable N, total amount of N mineralized in 22.1 weeks, the rate of N mineralization, and microbial biomass C were significantly greater in the minimum tillage than in the moldboard plow treatment. Chisel plow treatment showed intermediate values. The ratios of potentially mineralizable N and of easily mineralizable to total soil N were also significantly larger under minimum tillage and chisel plowing than under moldboard plowing. The lime and P treatments had no significant effect on the measured soil quality parameters. The total amount of N mineralized per unit of biomass C decreased as the tillage intensity increased, suggesting a decrease in the efficiency of the biomass in transforming organic N into potentially plant-available forms and thus a loss in soil organic matter quality. The results of this study indicate that conservation tillage practices such as rototilling and chisel plowing are efficient ways of maintaining soil organic matter quality when old pastures are brought back into cultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 189 (1997), S. 197-203 
    ISSN: 1573-5036
    Keywords: decomposition ; particle size ; residue ; rye ; straw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of contact between the soil and crop residues on the processes of residue decomposition are still poorly understood. The objective of this study was to investigate the effects of residue particle size on the decomposition of wheat (Triticum aestivum L.) straw (C/N=270) and green rye (Secale cereale) residues (C/N=9). Residue particle size was used as a means to vary the contact between crop residues and the soil. Carbon mineralization was measured during 102 d for straw and 65 d for rye, on residues ranging in sizes from laboratory model (0.03 cm) to field-scale (10 cm). The soil was a silt (Typic Hapludalf) and the incubation was performed at 15 °C. The effects of particle size on C mineralization varied for the two residues. In the first two days of incubation, decomposition rate of rye increased with decreasing particle size but thereafter, the trend was reversed. In 65 days, 8% more C was decomposed in the 7-cm residues than in the 0.03-cm ones. For wheat straw, early decomposition (3–17 days) was faster for the small-sized particles (0.06 and 0.1 cm). Thereafter, the largest size classes (5 and 10 cm) decomposed faster. After 102 days, the very fine particles (≤ 0.1 cm) showed the greatest and the intermediate size classes (0.5 and 1 cm), the lowest amount of C mineralized. We hypothesized that greater availability and accessibility of N was responsible for the higher rates of decomposition observed for finely-ground wheat straw while a physical protection of finely ground residues was probably involved in the observed reverse effect for rye.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...