ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cancellous bone  (1)
  • Cyanidium caldarium  (1)
  • 1
    ISSN: 1432-0827
    Keywords: Prostaglandin E2 ; Long-term treatment ; Cancellous bone ; Bone formation ; Bone resorption ; Bone turnover ; Remodeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The effects of long-term prostaglandin E2 (PGE2) on cancellous bone in proximal tibial metaphysis were studied in 7-month-old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE2/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE2 produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE2 for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE2 administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 433 (2000), S. 57-60 
    ISSN: 1573-5117
    Keywords: aluminium ; Cyanidium caldarium ; acidophile ; thermophile ; red alga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cyanidium caldarium, an acidophilic, thermophilic red alga, specifically tolerates Al. The tolerance increases at lower culture temperatures. The intracellular Al concentration is kept at low levels, especially when the cells are cultured at lower temperatures. Lower Al incorporation accounts for the Al tolerance in this alga. Fe incorporation antagonizes the Al incorporation, implying that Fe transporters incorporate Al ions. Treatment with an uncoupler, carbonylcyanide m-chlorophenylhydrazone, increases the intracellular concentration of Al. These results support the hypothesis that Al ions taken up by the algal cells are exported by an energy-dependent mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...